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Abstract

The purpose of this paper is to bring to the attention of economists a tool of analysis,
known as Petri nets, which was developed in the computer science literature. Although, from a
purely formal point of view, Petri nets are not a new tool, they do seem to provide a new
perspective on models of production. First of all, the graph-theoretic representation of Petri nets
makes it possible to see things that would be hard to detect from a purely algebraic formulation
of the same problem. Secondly, the formal definition of a Petri net allows one to introduce a
wedge between the notions of input and output (to a production process) and the notion of
commodity. Among the inputs to (and outputs of) a production process one can include states of
nature, logical conditions, etc. This enables us to show that one of the assumptions which is
usually considered to be inherent to linear models of production, namely the absence of external
economies and diseconomies among processes, can be dispensed with. We also show that Petri
nets do not require another assumption normally associated with activity analysis, namely that of
constant returns to scale. Finally, Petri nets allow a simple analysis of the problem of what
commodity vectors can be obtained from a given vector of initial resources.

I am grateful to Kanapathipillai Sanjeevan for introducing me to the computer science
literature referenced in this paper and to Klaus Nehring, Joaquim Silvestre, Don Topkis and
two anonymous referees for helpful comments and suggestions.



1. Introduction

The purpose of this paper is to bring to the attention of economists a tool of analysis, known as
Petri nets, which was developed in the computer science literature. | We shall attempt to demonstrate
that Petri nets can be a useful tool for modeling production, at any level (a single firm, a group of firms,
the entire economy). From a purely formal point of view, Petri nets cannot be considered a new tool,
since —as we shall see —the notion of Petri net is equivalent to the notion of an input-output system
with integer coefficients (for a definition of input-output system see Appendix C). Thus Petri nets
would fall within the category of linear production models or activity analysis. However, there are
several points of view from which Petri nets may be a superior modeling tool to traditional linear
production models. First of all, the graph-theoretic representation of Petri nets makes it possible to see
things that would be hard to detect from a purely algebraic formulation of the same problem (the
example of Figure 6.1, Section 6, is an illustration of this). Secondly, the formal definition of a Petri net
allows one to introduce a wedge between the notions of input and output (to a production process) and
the notion of commodity. Among the inputs to (and outputs of) a production process one can include
states of nature, logical conditions, etc. This will enable us to show (Section 6) that one of the
assumptions which is usually considered to be inherent to linear models of production, namely the
absence of external economies and diseconomies among processes, can be dispensed with: Petri nets
can incorporate external economies and diseconomies. We also show (Section 6) that Petri nets do not
require another assumption normally associated with activity analysis, namely that of constant returns to
scale. Finally, Petri nets allow a simple analysis of a problem which so far has received little attention in
general input-output analysis, namely what commodity vectors can be obtained from a given vector of

initial resources (the so-called reachability and coverability problems).

I The concept of Petri net has its origin in Petri’s (1962) dissertation. Most of the Petri-net related papers written in
English before 1980 are listed in the annotated bibliography of Peterson (1981), which is the first book on the subject. More
recent papers up until 1984 are annotated in the appendix of Reisig (1985). A good introduction to Petri nets can also be
found in Murata (1989). More recent books on Petri nets are Reutenauer (1990) and Reisig (1992).



The paper is organized as follows. In Sections 2-5 Petri nets are introduced and both their graph-
theoretic and algebraic representations are illustrated. Two important concepts associated with Petri nets
—execution and reachability — are explained and given an economic interpretation. In Section 6 we
elaborate on the economic interpretation of Petri nets and show that the assumption of absence of
external economies and diseconomies among processes and the assumption of constant returns to scale
are not inherent to Petri nets. In Section 7 the production possibilities associated with a Petri net model
of production with specified initial resources are discussed. Finally, in Section 8 the notion of
commodity “augmentability” or “producibility” is introduced and a simple test for augmentability is
proved. There are also three appendices where some of the issues are dealt with in greater detail, such as
the definition of returns to scale appropriate to a model with integer constraints and the relationship

between Petri nets and activity analysis or input-output systems.

2. Petri nets: graph-theoretic representation and
economic interpretation

DEFINITION 2.1. A Petri net is a quadruple (P, T, A, v), where

e P= {pl, ey pn} is a set of places (thus n is the number of places);

o T= {tl, - tm} is a set of transitions (thus m is the number of transitions);

e PNT =,

o Ac (PxT)U(TxP) isaset of arcs; if (pi,tj) € A, we say that place p, is an input to transition

t; if (tj,pi) € A, we say that place p, is an oufput of transition t;

e v:(PxT)U(T x P) > N (where N is the set of non-negative integers) is such that v(a) = 0 if
and only if agA; if a€A, we call v(a) the multiplicity of arc a.

EXAMPLE 2.1. The following is a Petri net: P = {p,,p,}, T = {t;t,}, A= {(pl,tl),



Graphically, each place p; is represented by a circle and each transition tj is represented by

a rectangle. We draw an arrow from p; to tj if and only if (pi,tj)eA and we draw an arrow from tj

to p. if and only if (tj,pi)eA. Next to each arrow we write the multiplicity of the corresponding
arc.

For instance, the Petri net of Example 2.1 can be represented as shown in Figure 2.1.

FIGURE 2.1

ECONOMIC INTERPRETATION. The most obvious economic interpretation of Petri

nets is as follows: each transition represents a production process and each place represents a

commodity. According to this interpretation, transition t, in Figure 2.1 represents a production
process that requires 1 unit of commodity p, and 3 units of commodity p, to produce 4 units of
commodity p,, while transition t, represents a production process that uses 2 units of commodity

p, as input and delivers 3 units of commodity p, as output.

We shall maintain throughout the original terminology of Petri nets and indicate
separately the suggested interpretation. There are two reasons why we prefer not to depart from
the original terminology: (1) it will be easier for the reader to refer to the computer science
literature on the subject, and (2) there may be other useful economic interpretations of Petri nets

beyond the one suggested in this paper.



DEFINITION 2.2. A marking for a Petri net is a function p: P — N (thus a marking can
be thought of as a vector peN™: recall that n is the cardinality of the set P of places). A marked

Petri net is a Petri net together with an initial marking p.

Graphically, we can represent a marking in one of two ways: if the numbers p. = p(p,)

(i=1,...,n) are small, we draw, inside each place p;, . dots @ called fokens; if the numbers are

large, we write the number p. inside each place p;. For example, the marking p(p,) =4, u(p,) =3

for the Petri net of Figure 2.1 can be represented in one of the two ways shown in Figure 2.2.

FIGURE 2.2a FIGURE 2.2b

ECONOMIC INTERPRETATION. A marking can be thought of as a vector of available
resources. Thus Figure 2.2 represents a situation where the resources that are initially available

are 4 units of commodity p, and 3 units of commodity p,.

3. Execution rules for Petri nets

DEFINITION 3.1 A transition of a marked Petri net is enabled at marking p if each of

its input places has at least as many tokens in it as the multiplicity of the arc from it to the

transition. That is, transition ‘[j is enabled at p if

(Ppt) €A = 1py) = v(ppb).



For example, in the marked Petri net of Figure 2.2, both transitions are enabled (since

wp)=4>v(p, t) =1, wp,)=4>v(p,t,) =2, wp,) = v(p,t) = 3).

In the economic interpretation suggested above, to say that transition t is enabled at
marking p is to say that the production process represented by t, can be activated (or operated)
given the available resources. Thus in the example of Figure 2.2 production process t, can be
activated, since it requires, for its operation, 2 units of commodity p,, and (at least) 2 units of

commodity p, are indeed available. Similarly, production process t, can be activated, given the

available resources.

DEFINITION 3.2. A transition can fire at p only if it is enabled. When an enabled

transition tj fires, V(pi’tj) tokens are removed from each input place p, of tj and V(tj’pi) tokens are
added in each output place p, of tj. Thus the firing of a transition at marking p leads to a new
marking p’ defined as follows [recall that if (pi,tj)eA then v(pi,tj) = 0 by definition; similarly, if

(tj,pi)ezA, then, by definition, v(tj,pi)=0] :
H(py) = upy = vppt) +v(Gp)  (=Ln).

Note that, since only enabled transitions may fire, the number of tokens in each place
always remains non-negative when a transition is fired. Transition firings can continue as long as

there is at least one enabled transition. When there are no enabled transitions, the execution halts.

EXAMPLE 3.1. Consider the marked Petri net of Figure 2.2. Firing transition t,

(operating production process t,) leads to the marked Petri net of Figure 3.1.



FIGURE 3.1a FIGURE 3.1b

In the marked Petri net of Figure 3.1, again both transitions are enabled. Firing transition t,

(operating production process t, again) leads to the marked Petri net of Figure 3.2.

FIGURE 3.2a FIGURE 3.2b

In the marked Petri net of Figure 3.2 none of the transitions is enabled: we have reached a

deadlock. Thus if Figure 2.2 represents an economy at a given instant in time, operating only

production process t, leads to a situation where commodity p, is depleted and no more

production can take place (in this example a deadlock can be avoided by a suitable activation of



production process t,). In the next section we show how to represent the production possibilities

that are associated with a given marked Petri net.

4. The reachability digraph of a Petri net

Given a Petri net (P, T, A, v), the associated reachability digraph is the following arc-
labeled infinite digraph. The set of vertices is N (the set of possible markings for the Petri net).
Given two markings p and p' in Nn, there is a directed arc from p to p' if and only if there is a set
S = {t;,....t; } of transitions all of which are enabled at p and whose simultaneous firing is
possible and leads from p to p'. For every such set S of transitions we draw an arc from p to '

and label it with S.

EXAMPLE 4.1. Consider the Petri net of Figure 2.1. Figure 4.1 shows part of its
reachability digraph. The path {(4,3), t, (2,6), t,, (0,9)) is the one illustrated above in the
sequence of Figures 2.2, 3.1 and 3.2. Note that both transitions t, and t, are enabled at marking
(4,3) and also at marking (2,6). However, the simultaneous firing of the two transitions is only
possible at (4,3) and not at (2,6) (firing both t and t, at the same time requires at least 3 units of

the commodity represented by place p,). Thus there is no arc labeled {t,t,} out of node (2,6). 2

2 Thus, in general, even if one can go from . to [’ in two steps, by firing transitions ti and t (with
k # j) in any order, it may not be possible to go directly from . to ' by firing ti and t simultdneously. The
reason — as pointed out above — is that, although both ti and t, are enabled atAp. (so that each can be fired

in isolation), there may not be enough resources to fire both at the same time.



deadlock

FIGURE 4.1

DEFINITION 4.1. A marking W' is reachable from p if either p' = p or there is a path
from p to p' in the reachability digraph. The reachability set of a marking p, denoted by R(p), is

the set of markings that are reachable from L.

According to the economic interpretation suggested above, the reachability set R(u)
represents the production possibilities associated with a given vector p of initial resources (that

is, all the commodity vectors into which the initial resources can be transformed). In the example

of Figure 2.2, where the initial resources are 4 units of commodity p, and 3 units of commodity



p,, it is possible, for instance, to double the quantity of commodity p, without reducing the

quantity of commodity p,: the commodity vector (4,6) can be obtained from the vector of initial

resources (4,3) [cf. Figure 4.1].

The reachability set of a marking p can be obtained from the reachability digraph of the
Petri net by considering its maximal subgraph with p as source. R(p) will then coincide with the
vertex set of this subgraph. Furthermore, the subgraph would also give complete information
concerning all the possible sequences of transition firings that lead from p to any marking p'
reachable from p. Unfortunately, this subgraph may be very large and in most cases is infinite. A

more practical tool for analyzing questions of reachability will be discussed in Section 7.

The reachability digraph does not provide any information concerning time, which may
be an important issue in modeling production. However, there is a straightforward way of

modifying the reachability digraph so as to represent the amount of time involved in moving

from a vector of initial resources p to a new vector p' eR(p). Let T be the number of units of time
required to operate the production process represented by transition £ Givenaset S =

{t i ""’t.ir} of transitions, let Tg be the amount of time that elapses if all the production
processes in S are run simultaneously. Clearly 1, =max {1, ,...,7; } . Then we can extend the
label associated with an arc in the reachability digraph by adding the corresponding amount of
time 1. For example, consider again the marked Petri net of Figure 2.2 and suppose that it takes

1 unit of time to operate process t, and 3 units of time to operate process t, (that is, t, = 1 and 1,

= 3). Hence it takes 3 units of time to operate the two processes simultaneously. It is then easy to
see from Figure 4.1 that the minimum amount of time it takes to transform (4,3) into (4,6) is 9
periods (achieved by following the path <(4,3),{tl,tz},(5,3),{tl,tz},(6,3),t2,(4,6)>, that is, by

running the two processes simultaneously twice and then t, only). 3

3n general, however, the minimum amount of time required to go from p to u' may be less than
the sum of the time labels associated with the arcs that form the (relevant) path from p to p'. This is

10



5. The algebraic representation of Petri nets

Given a Petri net (P, T, A, v) with n places and m transitions, the associated input

matrix is the n x m matrix A = (aij) where ay; = v(pi,tj); the associated output matrix is the

nxm

n x m matrix B = (bij )nxm where bij = V(tj’pi) . For example, for the Petri net shown in Figure

2.1, the associated input matrix is

transitions

1 2
3 0

“ O O & —=T
I

while the associated output matrix is

transitions

4 0
0 3

©n o6 » —o
I

Using the input and output matrices 4 and B we can recast the previous definitions in

. m . . .
vector and matrix terms. Let ¢ € N be the unit vector whose _]th component is 1 and every

other component is zero. Transition tj is represented by the unit vector &j- Now, transition tj is

enabled at marking p if and only if

uZAej

and the result of firing transition tj at marking p is the new marking ' given by

because when some processes are run simultaneously and one of them takes less time than the others, then it
may be possible to restart this process (if required by the path) while the others are still running. Thus the
sum of the time labels only gives an upper bound to the minimum time required.

11



o= u—Aej+ Bej = u+(B—A)ej.

On the other hand, starting at marking p and firing the sequence of transitions 6 =t; t; ...t; leads
1

2 k

to the new marking p'" given by

p'o= },L+(B—A)ej1+(B—A)ej2+...+(B—A)ejk = u+(B-4) f(o)

where

o) =e tTe +..Fe..
f() J1 2 Jk

The non-negative integer vector f(o) is called the firing vector of the sequence o =t; t; ...t; . The
12k

jth component of f(o) is the number of times that transition tj fires in the sequence t 4 .t
12k

Now, if marking ' is reachable from marking p, there exists a sequence o (possibly
empty) of transition firings that leads from p to p'. This implies that f(o) is a solution, in non-

negative integers, for x in the following matrix equation 4
Ww=ut+B-A4A)x (5.1

Thus, if p' is reachable from p, then Equation (5.1) has a solution in non-negative integers; if

Equation (5.1) has no such solution, then p' is not reachable from p. Consider, for example, the

. - 1 2 4 0 0 0
Petri net shown in Figure 2.1, where A = and B= .Let p= and p'= .
30 0 3 9 8

Then Equation (5.1) has a unique solution x =( J , which is not in non-negative integers.

0 0
Hence (8} is not reachable from (9] (in fact, we know from Figure 4.1 that the latter is a dead-

4 Equation 5.1 can also be written as p' —p = (B —A)x, where the left-hand side represents the
addition to the initial resources U (net output). Thus it is a generalization of the well-known Leontief
equation: y = (I —A)x. Note that, unlike in the Leontief case, the matrices A and B are not necessarily
square and each process can produce several outputs (that is, joint production is allowed).



4 3
end). On the other hand, let p = (3} , uW= (J . Then Equation (5.1) has the unique solution

X = (2) , which corresponds to either the firing sequence tt,t,, or tyt t, or {t.t,}t, but no

other sequence (cf. Figure 4.1).

Note that the existence of a solution in non-negative integers of Equation (5.1) is a

necessary but not sufficient condition for p’ to be reachable from p. For example, consider again

1 2 4 0 0
the Petri net shown in Figure 2.1, where A = ( j and B= ( j . Let p= ( j ,
30 0 3 9
1 . , 3 |
p = 1) Then Equation (5.1) has the solution x = 4) However, 12 is not reachable from

0
(9} , since the latter is a dead-end (cf. Figure 4.1).3

We saw above that with a Petri net one can associate a pair of nxm (input-output)
matrices (4,B) whose entries are non-negative integers. Conversely, given a pair of nxm
matrices (4,B) whose entries are non-negative integers one can associate with it a Petri net as

follows. Associate one place with each row of 4 and one transition with each column of 4. Draw

an arc from place p, to transition ‘[j if and only if aj; (the entry in the i row and jth column of A4)
is positive and assign multiplicity aj; to that arc. Finally, draw an arc from transition tj to place p;
if and only if bij (the entry in the i row and jth column of B) is positive and assign multiplicity

bij to that arc. Thus the notion of Petri net is equivalent to the notion of a pair of n xm matrices

STt may seem that this problem can be solved as follows. First determine if Equation (5.1) has a
solution in non-negative integers. If it does not, then p’ is not reachable from p. Otherwise, let x be a

solution in non-negative integers. Let k be the sum of the components of x (that is, k = X X, X ).

Consider the, at most k!, possible sequences of transition firings compatible with x (for example, if x =

(1,2), then all the possible firing sequences compatible with x are tth, bt and tztztl). If (at least) one of

them is legal, u' is reachable from p. The problem with this procedure is that Equation (5.1) might have
more than one solution in non-negative integers, even an infinite number of solutions (for an example see
Peterson, 1981, p.111; in that example n <m).

13



(A,B) whose entries are non-negative integers. The graph-theoretic definition has the obvious
advantages that come from a visual representation of the underlying structure. For example,
consider the problem of deciding whether, in the marked Petri net of Figure 5.1 (where the
multiplicity of each arc is 1), it is possible to obtain an arbitrarily large number of tokens in some

or all of the places, and if so, how.

FIGURE 5.1

From the matrix representation the answer is not immediately obvious. The input matrix 4 and

the output matrix B of the Petri net of Figure 5.1 are as follows:
0 00 1 10
A=|1 0 1 B=|0 1 0
010 0 0 1

From the graph-theoretic representation, however, it is apparent that the answer is “Yes” for

place p, (all is needed is that the sequence t;t, be fired a sufficiently large number of times) and

“No” for the other two places.

The “producibility” problem — whether or not it is possible to obtain an arbitrarily large

number of tokens in a given place, or set of places (that is, if it is possible to increase, through

14



production, the quantity of a commodity or set of commodities) — is an important one and will

be dealt with in Section 8.

6. Petri nets, externalities and returns to scale

We suggested an interpretation of Petri nets in terms of the production possibilities of a
firm, or group of firms, or the entire economy: each place represents a commodity and each
transition represents a production process. With this interpretation in mind, one might be tempted
to conclude that a Petri net is “nothing more than a von Neumann input-output system with the
added restriction that the entries of the input and output matrices be integers”. The relationship
between Petri nets and input-output systems is examined more thoroughly in Appendix C. Here
we shall highlight the fact that two assumptions that have been inherently associated with linear
production models — namely the absence of externalities between processes and the presence of

constant returns to scale — are not implied by the notion of Petri net. ©

We shall first of all show that externalities can be represented in a Petri net. Consider the
following simple example. There are two firms near a lake. One firm is an oil-refinery that uses
one unit of oil to produce one unit of gasoline. Production of gasoline leaves chemical waste that
the firm discharges in the lake. This chemical waste is a pollutant that reduces the population of
fish in the lake. The other firm (a fisherman) uses a boat to fish. If the lake is not polluted, the

fisherman can fish an average of 100 fish in one trip. If the lake is polluted, the catch will only be

6 It is also worth noting that, in principle, there is no need to assume that every row of B has at
least one positive entry (this assumption — which is often made in the context of the von Neumann growth
model — means that every commodity is produced by at least one process): some of the places of the Petri
net could represent non-producible commodities (e.g. various kinds of labor). Also it is meaningful to have
one or more columns of B consisting entirely of zeros: the corresponding transitions would then represent
disposal processes.

15



20 fish per trip. This is a clear example of external diseconomies between the two production
processes. Suppose that, initially, the lake is not polluted and oil refining has not started yet. For
simplicity, we shall also suppose that the supply of oil is unlimited. This situation can be
represented by the marked Petri net of Figure 6.1 (where the place corresponding to oil is marked
with the symbol o to denote the unlimited supply of oil; furthermore, for simplicity, the arc

multiplicity has been omitted whenever it is equal to 1). The only restriction that we need to

impose is that if 1 is an arbitrary initial marking, then
HolPo] + 1] =1

expressing the fact that the conditions “the lake is polluted” and “the lake is not polluted” are
mutually exclusive and each condition can only be either true (marking of 1) or false (marking of

0).7 A number of things should be noted about the Petri net of Figure 6.1:

(1) A place does not necessarily represent a commodity (if by commodity we mean a physical

entity for which there is a market or price). Thus we have not only places representing the

commodities boats (p,), fish (p,), oil (p,) and gasoline (p,) but also places representing the
condition, or state of nature, “the lake is polluted” (p,) and the condition “the lake is

unpolluted” (p,).

(2) Fishing does not create pollution and, therefore, if the lake is unpolluted and fishing takes

place at the high rate of 100 fish per trip, the lake remains unpolluted (p, is both an input to

and an output of t,).

7 Note that if the initial marking M satisfies the above condition, then every marking reachable

from M, also satisfies that condition.
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the lake the lake is unpolluted
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refining

refining

t
4

FIGURE 6.1

(3) The oil-refining process has been represented as two separate processes, one (transition t,)
using the unpolluted lake, and the other (transition t,) using the polluted lake, as input. The
former can be activated at most once (activating t, removes the token in p, for ever). After

that, the lake becomes polluted and fishing at the sigh rate of 100 fish per trip (transition t )

is no longer possible.
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(4) Fishing at the Jow rate of 20 fish per trip (transition t)) and refining can coexist for ever

(reflecting the simplifying assumption that the amount of pollution is constant, for example
because of a constant inflow of clean water into the lake and a constant outflow of polluted

water, e.g. through a river).

(5) The boats have been modeled as an infinitely lived capital good (p, is an input to, as well as

an output of, both t and t,).

This example also shows that the graph-theoretic representation of Petri nets can be a
very effective modeling tool. While it is very easy to grasp the situation depicted in Figure 6.1, it
would be extremely hard to gain the same understanding by mere inspection of the corresponding

input and output matrices, which are as follows (A is the input matrix and B the output matrix):

1 1 00O 1 1 0 O

1 010 1 0 0 O

01 0 1 0 1 1 1
A= and B=

0 0 0 O 100 20 0 O

0 0 1 1 0 0 0 O

0 0 0 O 0 0 1 1

Before we address the issue of returns to scale, we shall discuss the question of whether
the main restriction embedded in the notion of Petri net — namely that the entries of the input and
output matrices are (non-negative) integers — is indeed a restriction. We argue that, from the
point of view of applications, it is not. First of all, many commodities (e.g. pianos, washing
machines, etc.) are produced in indivisible units and for them the integer constraint is actually a
requirement rather than a restriction. Other commodities (e.g. milk, cream cheese, etc.) are
produced in divisible units. However, for practical reasons, for each such commodity there is a
minimum unit of measurement below which no further division takes place (e.g. for cream

cheese grams or ounces). Taking the smallest possible (from a practical point of view) units of

18



measurement for each such commodity, the integer constraint will obviously be satisfied. If one
accepts the above argument in favor of integer constraints, then one must also accept that each
production process must have a minimum scale of operation, bounded below by the production

of the smallest (practically measurable) unit of each output.

We now show that Petri nets can also model situations where there are increasing returns
to scale.8 Of course, this is trivially true if one takes the point of view that integer constraints
(that is, indivisibilities) are the essence of the notion of increasing returns to scale. According to
this point of view — which is not the one taken here — Petri nets can model only increasing
returns to scale! We shall adopt a definition of returns to scale which separates the integer
constraint problem from the issue of whether a production process can be scaled up or down. For
a detailed discussion the reader is referred to Appendix A. Intuitively, constant returns to scale
means that by doubling all the inputs one obtains exactly double the amount of output, while
increasing returns to scale means that by doubling all the inputs one can more than double the
output. If a production process is characterized by constant returns to scale, then — for the type of
questions examined in this paper (reachability, coverability, producibility, etc.) — it is sufficient
to list the minimum scale intensity of the process: scaling the process up by a factor of n is the
same as firing the corresponding transition n times. On the other hand, if a production process is
characterized by increasing returns to scale, then it can be represented by a number of different

transitions, each representing a minimum scale of operation. Consider the following simple

8 What about decreasing returns to scale? From a logical point of view, the notion of decreasing
returns to scale does not make sense. The notion of decreasing returns to afactor is certainly meaningful (it
is illustrated in the classical problem of the continual addition of labor to a fixed amount of land, say, one
acre). Decreasing returns to scale, on the other hand, means that doubling all the inputs (in the previous
example, land as well as labor) leads to less than double the amount of output. However, if all the inputs to
a production process are listed, then repetition or duplication of the process must yield double amount of
each output! Tt is generally agreed that “decreasing returns to scale require the presence of an extra input,
not listed in the arguments in the production function, that cannot be duplicated” (Silvestre, 1987, p. 80). In
a Petri net the availability of inputs is represented by the notion of marking, which is independent of the
notion of transition.
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example: if a group of fishermen use one boat, they can get, on average, 100 fish per trip, while if

they use two boats, their catch is, on average, 250 fish.

boats fishing fish

fishing

FIGURE 6.2

This situation can be represented by the Petri net of Figure 6.2. If the initial marking is, for
example, p[p,] =2 and p[p,] =0, then one can either fire transition t; twice or transition t, once.
In the first case the new marking will be (2, 200), in the second case it will be (2, 250) [note that

the Petri net of Figure 6.2 reflects the assumption that boats are infinitely lived capital goods].

7. Production possibilities and the Karp-Miller tree

In Section 4 we defined, for a given Petri net with initial marking (vector of resources) L,
the reachability set R(u) as the set of those markings (commodity vectors) that can be obtained
from p by some sequence of transition firings (operations of production processes). We saw that
one way of obtaining the set R(p) is by constructing the reachability digraph. There may be cases,
however, where one is interested not in constructing the whole set R(u), but in establishing
whether or not a particular commodity vector p’ belongs to this set, that is, is reachable from the

initial vector of resources p. This is the so-called reachability problem for Petri nets:

REACHABILITY PROBLEM: given an initial marking p and a marking ', is p’ reachable from p?
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Mayr (1984) showed that it is decidable whether or not a marking p' can be reached from p.
However, the corresponding algorithm is of exponential complexity (in storage space and time).
On the other hand, the coverability problem can be decided with a much simpler algorithm

(yielding the so-called Karp-Miller coverability tree).

COVERABILITY PROBLEM. Given an initial marking p and a marking p’, does there exist a

marking 1’ such that:

(1) p'’ is reachable from p, and

(2)  przp?

Karp and Miller (1969) constructed an algorithm that yields the so-called coverability
tree. The aim is to replace the (usually infinite) reachability digraph with a finite tree. Associated
with each node of the tree is an extended marking. Recall that a marking is a point in N (where n

is the number of places). An extended marking is a point in the set <N U {oo}> . The symbol o

stands for “infinity” and represents a number of tokens that can be made arbitrarily large. For

any integer k, we define:

Given an initial marking p_, we associate . with the root of the tree. We then proceed as in the

reachability digraph, except that: (1) we create a new node for every marking (this is a necessary
condition for the result to be a tree), (2) we introduce rules aimed at making every path from the
root finite. Thus starting from the root any path leads to a terminal node. Obvious terminal nodes

are dead ends (that is, markings at which no transition is enabled), or nodes whose associated
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markings are duplicates of markings previously obtained. The symbol « is used to obtain the
remaining terminal nodes. Consider a sequence of transition firings ¢ which starts at a marking p
and ends at a marking p' with p' > p, p' # p (thus, at least one component of p’ is greater than
the corresponding component of p). Clearly, all the transitions that were enabled at p are also
enabled at p'. Thus the sequence o can be fired again starting from p’ and will lead to a new
marking '’ = p' + (W — ) [since the sequence o adds the vector of tokens (1 — p)]. If we fire ¢
n times, we add the vector of tokens (i’ — p) n times. Thus, for those places which gained tokens
from the sequence o, we can create an arbitrarily large number of tokens simply by repeating the
sequence o as often as desired. For example, it can be seen from Figure 4.1 that firing the
sequence c=tt, from a marking (x,y) leads to marking (x+1,y): firing ¢ from (4,3) leads to
(5,3), firing o from (2,6) leads to (3,6), etc. When we obtain a marking ' > p, p' # p, we can
replace 1’ with an extended marking where there is the symbol « in place of those components of

' that are greater than the corresponding components of pL.

The Karp-Miller coverability tree is constructed by the following algorithm (which will
be illustrated in Figures 7.1-7.5). Every node v of the tree is assigned two labels: an extended
marking p[v] and the label A[v]e {temporary, interior, duplicate, dead-end, infinite}. The

algorithm terminates when there are no nodes v such that A[v] = “temporary”.

STEP 1. Let p  be the initial marking. Label the root v as follows: p[v ] = p,

A[v, ] = “temporary”.
STEP 2. While nodes v such that A[v] = “temporary” exist, do the following:

STEP 2.1. Select a node v such that A[v] = “temporary”.

STEP 2.2. If p[v] is identical to pu[v'] for some node v’ # v with A[v'] # “duplicate”, set

A[v] = “duplicate”.

STEP 2.3. If no transition is enabled at p[v], set A[v] = “dead-end”.
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STEP 2.4. If each coordinate of u[v] is the symbol oo, set A[v] = “infinite”.

STEP 2.5. While there exist enabled transitions at p[v], do the following for each enabled

transition at p[v].

STEP 2.5.1. Set A[v] = “interior”. Draw a new vertex w and an arc from v to
w. Label the arc with transition t. Obtain the marking p' that

results from firing t at p[v].

STEP 2.5.2. If on the path from the root to v there exists a node
z #Vv such that W > p[z] and p' # pfz], then replace each
component of p' which is greater than the corresponding

component of u[z] with the symbol .

STEP 2.5.3. Set y[w]=p’' and A[w] = “temporary”.

It can be shown that the Karp-Miller algorithm terminates (all nodes are labeled as either
interior or duplicate or dead-end or infinite) and therefore yields a finite tree. Thus the

coverability problem is decidable.

EXAMPLE 7.1. Consider the marked Petri net of Figure 2.2. With the aid of Figure 4.1

it is easy to see that the Karp-Miller algorithm yields the coverability tree of Figure 7.1. In fact, at
(4,3) both t; and t, are enabled. Firing t, leads to (7,0) while firing t, leads to (2,6). At (7,0) the

only transition that is enabled is t,. Firing t, at (7,0) yields (5,3) which is greater than (4,3) (the
initial marking): the first component is greater while the second is equal. Thus we replace 5 with
oo and attach label (0,3) to node v,. Going now to node v,, at (2,6) both transitions are enabled.
Firing t, leads to (0,9) which is a dead end (no transition is enabled). Firing t, leads to (5,3) 2

(4,3), (5,3) # (4,3). Thus we replace 5 with oo and attach (e0,3) to node v,. We have obtained a
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duplicate of node v,. Now go back to node v;: both transitions are enabled. Firing t, leads to
(00+3=00, 0). Firing t, leads to (c—3=c0, 6) which is greater than (=0,3), the second component
being greater. Thus we replace 6 with co and obtain the label (o0,0) for node v.,. Now we go back

to node v, firing transition t, leads to (co—2=00,3) which is a duplicate of node v;.

(4,3) interior
V

(7)0) (2,6) interior

interior

(0, 3)

interior

(0, 3) (0,9)
duplicate dead end
(same as v3)  (no transition

(o0, 0) V7 enabled)

interior (oo, oo)

t, infinite
Vg
(o0, 3)
duplicate FIGURE 7.1

(same as v3)

EXAMPLE 7.2. Consider the marked Petri net of Figure 7.2. Using the Karp-Miller

algorithm we obtain the tree shown in Figure 7.3.



FIGURE 7.2

(1,0,1,0) interior

oV,

Firing t3 at (1,0,1,0) leads to (1,0,0,1). This
3 marking did not appear before and is not

greater than one that appeared before.
Thus label v1 with (1,0,0,1)

t

(1,0,0,1) 5\,1
interior Firing t2 at (1,0,0,1) gives (1,1,1,0) which is greater
t than the marking of vo: the second component is
2 greater, the other components are equal.
Replace the second component with infinity and
attach to v2 the label (1,00,1,0)

(1 7w’ 1 ’0) V2

interior

Firing t1 leads to
(1900_1=009090)

V3 (1,0,0,1)
(1’00,0,0) 4 interior
dead end ¢

2

(no transition enabled here)

v (1,00,1,0)

duplicate (same as label of node v2)

FIGURE 7.3
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Although the Karp-Miller tree answers the coverability question, the use of the symbol oo

involves an important loss of information. For example:

(1) Two essentially different Petri nets might have the same coverability tree (for an

example see Peterson, 1981, p. 104);

(2) Even if the coverability tree has no nodes labeled “dead-end” (and even if there is
a node labeled “infinite”), the net may deadlock. Consider for example the marked Petri net of

Figure 7.4, whose reachability tree is shown in Figure 7.5.

t

2

FIGURE 7.4

(1,0,0)

(o0, 0, ) (o0, ®, 0)

infinite duplicate

FIGURE 7.5
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The following firing sequence leads to a deadlock:

(1L0,0)—L5(2,1,0)—15(3,2,0)—L5(4,3,00—2(0,0,1) deadloc

8. Augmentable commodities

Given an initial marking (interpreted, economically, as a vector of initial resources) it is
easy to check if it is possible to produce an arbitrarily large number of units of commodity i by
simple inspection of the corresponding Karp-Miller coverability tree: if there is a node in the tree

th component, then the answer

whose corresponding extended marking has the symbol o as its i
is affirmative, otherwise it is negative. However, one could ask the same question without

reference to a specific vector of initial resources. This motivates the following definition.

DEFINITION. Commodity 1 (represented by place p.) is augmentable if there exists an
initial marking p such that, for every positive integer N, there exists a marking pi reachable from

th

H, whose i component is greater than or equal to N.

In other words, commodity i is augmentable if there is at least one initial marking p_ with

the property that, in the associated Karp-Miller coverability tree, there is a node whose
corresponding extended marking has the symbol oo as its ith component. With this interpretation

in mind it is easy to see that the following lemma is true.

LEMMA 8.1. Consider a Petri net with corresponding input matrix 4 and output matrix

B. Commodity i is augmentable if and only if there exists an xeN™ such that
(B - A) X 2 e

th

[where e.€ N"™ is the vector whose i"* component is 1 and every other component is 0]
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The following proposition shows that one can check whether or not a commodity is
augmentable by solving a simple linear program without having to impose the constraint that the

solution be in integers (that is, not an integer program).®

PROPOSITION 8.1. Consider a Petri net with corresponding n xm input matrix 4 and

output matrix B. Fix an arbitrary je{1,2,...,m} and let ejeNm be the unit vector whose jth

coordinate is 1 and every other coordinate is 0. Then, for every i = 1,...,n, commodity i is
augmentable if and only if the following linear program (note: not integer program) has a

solution:

minimize X - e
subject to: erRm, (B-A)x = e. and x20,

where e, e N"is the i unit vector [note that x- e is the jth coordinate of x].

Proof. See Appendix B.

The following lemma and proposition are the dual of Lemma 8.1 and Proposition 8.2. A

proof can be found in Appendix B.
LEMMA 8.2. Commodity i is not augmentable if and only if there exists a yeN" such that
(B-A)'y <0 and (»).21

where “T” denotes transpose and (y); denotes the ih coordinate of V.

PROPOSITION 8.2. Consider a Petri net with corresponding » xm input matrix 4 and

output matrix B. Fix an arbitrary ke{1,2,...,n} and let ¢ € N" be the unit vector whose k'

9 There does not seem to be a clear economic interpretation of Propositions 8.1 and 8.2.
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coordinate is 1. Then, for every i = 1,...,n, commodity i is not augmentable if and only if the

following linear program (note: not integer program) has a solution:

minimize y - e,

n ((A-B)' 0
subjectto:  yeR, (( ) ]y = (J and y>0,
e.

1

where e N is the i unit vector and 0eN™ is the vector all of whose coordinates are 0 [note

kth

that y-e, is the k™ coordinate of y].

9. Conclusion

The purpose of this paper was to bring to the attention of economists Petri nets, a tool
developed in computer science. Although, from a purely formal point of view, Petri nets are not a
new tool (since a Petri net is equivalent to a generalized input-output system with integer
coefficients), they do seem to provide a new perspective on models of production, whether it is at
the level of a firm, of a group of firms or of the whole economy. First of all, the graph-theoretic
representation of Petri nets makes it possible to see things that would be hard to detect from a
purely algebraic formulation of the same problem. Secondly, the formal definition of a Petri net
allows one to introduce a wedge between the notions of input and output (to a production
process) and the notion of commodity. Among the inputs to (and outputs of) a production process
one can include states of nature, logical conditions, etc. This enabled us to show that one of the
assumptions which is usually considered to be inherent to linear models of production, namely
the absence of external economies and diseconomies among processes, is not required in a Petri
net model of production. We also showed that Petri nets do not require another assumption
normally associated with activity analysis, namely that of constant returns to scale. Finally, Petri
nets allow a simple analysis of a problem which so far has received little attention in general
input-output analysis, namely what commodity vectors can be obtained from a given vector of

initial resources.

29



APPENDIX A

In this appendix we discuss the notion of returns to scale. Let n be the number of

commodities and Y R" be a production set. Debreu (1959, pp. 40-41) gives the following

definitions:

Constant returns to scale [each production vector can be scaled up or down]:

yeY, LeR", = AyeY (where R"is the set of non-negative real numbers).

Non-decreasing returns to scale [each production vector can be scaled up]:

yeY, AeR,A>1 = AyeY.

Increasing returns to scale: there are non-decreasing returns to scale and there is a possible

production for which the scale of operations cannot be arbitrarily decreased.

According to this definition, whenever there are integer constraints, constant returns to
scale are ruled out by definition. One is therefore forced to say that Petri nets can only model
increasing returns to scale. In what follows we shall put forward alternative definitions which are
tailored to the case where there are integer constraints. In order to isolate the integer constraint
problem from the notion of returns to scale we shall take the commodity space to be not R" but

N™. A production set is a subset Y = N x N . If (x,y)eY then x represents inputs and y outputs.

DEFINITION. Following Debreu, we say that producion set Y& N xN has non-

decreasing returns to scale if

xy)eY, heN,A>1 = A@xpy)eY

DEFINITION. P = N x N is a linear production process with minimum scale (x,,y,)#0

if: (1) P={@®xy): xy)=Ax,,y,) for some LeN\{0} }

1
(2) for every AeN with A > 1, " (XY, €P.
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For example, Figure A.la shows a linear production process with minimum scale (4,1)
while Figure A.1b shows a linear production process with minimum scale (6,2).10 In a Petri net

each transition represents the minimum scale of operation of a linear production process.

The production set associated with a Petri net is the set generated by a finite number of
linear production processes with minimum scale of operation represented by the corresponding
transition. It is clear that the production set of a Petri net has non-decreasing returns to scale. In
order to disentangle indivisibilities from scale economies we suggest the following definition of

constant and increasing returns to scale.

DEFINITION. Given a production set ¥ ¢ N x N , the following set is the set of efficient

production vectors:

vt = {(xy)eY : VX, y)eN xN with (x, y)# (x,y), X' <xand y' >y, (x,y)eY }.

DEFINITION. A production set Y has constant returns to scale if
y)eYt, heN{0} = rxp)err.

DEFINITION. A production set Y has increasing returns to scale if (i) it has non-
decreasing returns to scale and (ii) 3 (x,y) € YE, e N\{0} such that A(x,y)¢ Yt

Thus, for example, in both Figure A.la and Figure A.1b we have a production set
(consisting of a single process) displaying constant returns to scale. If Y is the production set

generated by these two processes, then Y has increasing returns to scale. In fact letting

10 Figure A.la can be interpreted as follows. There are two goods, 1 and 2. Good 1 is an input

only and good 2 is an output only. The process represented by Figure A.la is the set P ={ (4,0,0,1),

(8,0,0,2), (12,0,0,6)...}. Thus P is a 4-dimensional set and Figure A.la gives a 2-dimensional projection.
Similarly for Figure A.1b.
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(x,y)=(4,1) and A=3, we have that (X,y)eYE but k(x,y)=(12,3)eYE, because

(x,y)=(12,4)ey. 11

ouput ouput
s E 8l -
4l - R 6 - - - - - 'y °
3--- - - °
. 4 - '

2-- - . .

) 2|-- o
T.* ST
0 4 8 12 16 20 nput 0 6 12 18 24 et

FIGURE A.1a FIGURE A.1b

APPENDIX B

In this appendix we prove Propositions 8.1 and 8.2 and Lemma 8.2. We first prove some

lemmas.

LEMMA B.1. Let 4 and B be n x m matrices whose entries are integers and let e, N" be

the unit vector whose i coordinate is 1 and every other coordinate is 0. Let
[er = {xeR™ | x>0} (where R denotes the set of real numbers). Then the following

conditions are equivalent:

(1) IxeN™ suchthat (B-4)x>e,,

2 IxeR™ suchthat (B—A4)x>e..
+ 1

1T Tg be consistent with our notation we should have written the production vectors as (4,0,0,1),
(12,0,0,3) and (12,0,0,4): cf. the previous footnote.



Proof. That (1) = (2) is obvious, since N™cR™. We now show that (2) = (1).

Suppose that T = {x e[RIf | (B—A4)x > ei} is non-empty. Since all the entries of 4, B and e, are

integers, there must be a point x €T N QT, where QQ denotes the field of rational numbers and

QT ={xeQ™ | x>0} (see Chvatal, 1983). Then the " coordinate of x, is equal to P for
9j

m

some pj,qjeN, with qj;tO. Let a= qu. Then aeN, a >0, ax_ e N™ and (B-4 Mo ) =
j=1

UB-A)x 2 ae e, n

PROOF OF PROPOSITION 8.1. By Lemma 8.1, commodity 7 is augmentable if and only

if the set S={xeN If |(B—A)x > ei} is non-empty. By Lemma B.1, S is non-empty if and only
if T={xeR T |(B—A4)x 2> ei} is non-empty. Thus it only remains to show that T is non-empty if
and only if, for an arbitrary je {1,2,...,m}, the following linear program has a solution:
minimize x - e
subject to: xe[Rm, B-A)x = e, and x20,

where ¢ is the jth unit vector in N™ and e, is the i unit vector in N™. It is clear that if the above

program has a solution, then T is non-empty. We only need to show the converse. Suppose that T
is non-empty. Then (cf. Nef, 1967, Theorems 2 and 3, pp. 144 and 146) T =K, + K,, where K,

is a convex polyhedron, whose vertices can be taken to be the basic solutions of the system of

inequalities (B —A)x 2 e, and x>0, and K, is a convex pyramid. Let a,, ..., a, be the vertex

vectors of K1 and let bl’ v bS be the generators of Kz. Thus if erT then there exist non-

negative real numbers 7‘1’ e kr, Hps e B such that lek =1 and
k=1

r S
Xo= D Mgy + D Miby
k=1 k=1

Thus
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v S
Xo-ej= D Milag);+ D g (by)
k=1 k=1

Since, forevery k=1, ..., s, bk > 0, it follows that (bk)j > 0 and therefore (see Nef, 1967, p. 150)

the linear program has at least one solution (furthermore, there is at least one solution which is a

basic solution). H

PROOF OF LEMMA 8.2. By lemma 8.1, commodity i is not augmentable if and only if
the set S={xeN™| (B -4)x> e; } is empty. By Lemma B.1, S is empty if and only if T =

{ xeR™ | (B —A)x > e } is empty. By the Minkowski-Farkas lemma (see, for example, Hu,
1969, pp. 8-9), T is empty if and only if U = {yeIRi | (B —A)Ty <Oandy-e > 0} is non-

empty. By an argument similar to the one used in the proof of Lemma B.1 (that is, by appealing

to the fact that the entries of 4, B and e, are non-negative integers), one can show that U is non-

empty if and only if V={yeN"| (B - A)Ty <Oandy-e = (), 2 1} is non-empty (note that
yeN"and y - e; > 0 implies y - ¢; > 1) which in turn is equivalent to non-emptiness of W =

{yeRY | (B—A4)Ty<0and yoe>1 B

PROOF OF PROPOSITION 8.2. In the proof of Lemma 8.2 it was shown that

commodity i is not augmentable if and only if the set W = { ye[Ri | (B —A)Ty < 0 and
Ve 1} is non-empty. The inequalities (B —A)Ty <0Oand y-e 21 can also be written [since

(B - A)Ty <0 is equivalent to —(B — A)Ty > (0, which in turn is equivalent to (4 — B)Ty > O} as:

_B)" 0
)y = () ®1)

1

where 0 is the origin in R™. By an argument similar to the one used in the proof of Proposition

8.1, the subset of [Ri that satisfies (B.1) is non-empty if and only if the following linear program

has a solution:
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minimize y - e,

A-B)' 0
subject to:  yeR", (( )]y = (J and y>0. ®
e.

1

APPENDIX C:
input-output systems and activity analysis

In this appendix we discuss the relationship between Petri nets and input-output systems,
which were introduced by von Neumann in 1937.12  An input-output system is a pair of real,
non-negative, n x m matrices (4,B), where A4 is the input matrix and B is the output matrix.

Each row of 4 (and B) represents a commodity and each column of 4 (and B) represents a basic

production process. The jth column of 4, a gives, for each commodity, the quantity (possibly

zero) used by basic process j, while the jth column of B, bj, gives, for each commodity, the

quantity (possibly zero) produced by basic process j. In input-output (or activity) analysis it is

assumed that for every j = 1,...,m and for every real number A > 0, the production process that

transforms kaj into M)j is technologically feasible (constant returns to scale) and that if j and
k are basic processes, then the process that transforms aj; + a, into bj + b, is also
technologically feasible (additivity). Thus every vector xeR", x > 0, called an intensity vector,

represents a feasible production process that transforms Ax into Bx.

12 The so-called “activity analysis” (see, for example, Koopmans, 1951) is covered by the notion
of (von Neumann) input-output system (if the number of processes is finite). In the special case where
n = m and B is the identity matrix — each production process is an industry and each industry produces a
single, homogeneous, product — then A is called a Leontief matrix (Leontief, 1941).
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Now we turn to a discussion of the relationship between the notion of augmentable
commodity introduced in Section 8 and the two notions of von Neumann growth rate and of

productivity of a Leontief matrix.

Von Neumann’s (1945) objective was to determine the maximum rate of proportional
growth of an arbitrary input-output system (we shall follow the version of von Neumann’s model

given by Gale, 1956). To this purpose, given an intensity vector x and a commodity i, define the

expansion rate o(x) of i in x as follows (recall that if y is a vector, (y); denotes the ith component

of y):
_ (Bx), :
o, (x) = —(Ax)i if (Ax),>0
00 if (Bx),>0 and (Ax), =0

undefined if (Bx), =(Ax), =0

The technological expansion rate of intensity vector x, a(x), is defined by

a(X) = IN a;(x).

1=1...,n

Finally, the technological expansion rate of the system (4,B), a, is defined by
o= max o(x).
xeR™ x>0

An intensity vector x such that a(X) = o is called optimal. Gale (1956) showed that o is well-
defined and 0 < o < oo, if and only if the following condition holds: every column of 4 has a
positive entry (i.e. every basic process requires at least one input) and every row of B has at least
one positive entry (i.e. every commodity is produced by at least one basic process). If the
technological expansion rate o is greater than 1 and there is a corresponding optimal intensity
vector X such that all of its components are positive, then the system can grow at the rate of
100(ae — 1)% per period, in the sense that every commodity will grow at least at that rate,

although some commodities may grow at a faster rate.
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What is the relationship between the von Neumann expansion rate oo and the notion of
augmentable commodity discussed in Section 8? First of all, o > 1 does not imply that every

11 3 2
commodity is augmentable. For example, let A = (O J and B= (O J . Then o= 3 and

yet only commodity 1 is augmentable. Secondly, even if o = 1 it may be possible to produce

arbitrarily large quantities of some (up to n-1) commodities. For example, let

0 0 1 0
A={0 1| and B=|1 0. Then a = 1 and every optimal intensity vector is a scalar
1 0 0 1

multiple of (1,1). While commodities 2 and 3 are not augmentable, commodity 1 is. An easy
way of seeing this is by means of the Karp miller coverability tree shown in Figure C.1, where it
is assumed that the initial vector of resources (the initial marking) is (0,1,0). Thus from the fact
that o > 1 one cannot deduce that every commodity is augmentable and from the fact that o = 1

one cannot deduce that no commodity is augmentable.

The notion of augmentable commodity is also related (but not identical) to the notion of a
productive Leontief matrix. Gale (1960, p.296) defines a Leontief matrix to be productive if
there exists a non-negative vector xeR™ such that x > 4x . This definition can be extended to a
general input-output system ( 4, B) by calling it productive whenever there exists a non-negative
vector xeR" such that Bx > 4Ax. Two observations can be made concerning this definition. First
of all, apart form the simple case of a Leontief matrix, I3 there is no simple way of checking
whether or not an input-output system is productive. Secondly, it may be possible to have an
economy where all the commodities, except one, are augmentable (that is, their quantity can be
increased through production) and yet, according to the above definition, the economy is not

productive (an example of this was given above).

13" 1t can be shown (see Gale, 1960, chapter 9) that a Leontief matrix 4 is productive if and only
if the maximum eigenvalue of 4 is less than 1.



0 0 1 0
The input-output systemis: A=|0 1|, B=|1 0| with initial resources (0,1,0)
1 0 0 1

The corresponding coverability tree is:

(0,1,0) (0,0,1) (0,1,0) (0,0,1) (0,1,0)
O > > > »( duplicate
1:2 1:1 1:2 1:1
FIGURE C.1
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