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Abstract

When we make a prediction we select, among the conceivable future descrip-
tions of the world, those that appear to us to be most plausible. We capture this
by means of two binary relations, <. and <j: if ¢t; and f2 are points in time,
we interpret {1 <. {2 as saying that t2 is in the conceivable future of t1, while
t1 <p t2 is interpreted to mean that {2 is in the predicted future of ¢;. Within
a branching-time framework we propose the following notion of “consistency of
prediction”. Suppose that at ¢; some future moment ¢» is predicted to occur,
then (a) every moment ¢ on the unique path from ¢; to t2 should also be pre-
dicted at ¢; and (b) the prediction of t2 should continue to hold at every such
t. A sound and complete axiomatization is provided.

1. Introduction

When we make a prediction about the future we select, among the conceivable future
descriptions of the world, those that appear to us to be most plausible. Thus the
concept of prediction involves three notions: (1) time (predictions are about the
future), (2) conceivable future states of the world and (3) a selection from the set of
conceivable states of those that are considered most plausible. We propose a system
of modal logic that incorporates these three elements. The notion of a multiplicity of
possible future states is captured by what is known in temporal logic as branching time
(where multiple paths between two instants are ruled out). To distinguish between
conceivable and plausible future possibilities we introduce two binary relations, <.
and <. If £; and ¢, are different points in time, we interpret #; <.t as saying that
to is in the conceivable future of t1, while t; <, t5 is interpreted to mean that ¢ is in
the predicted future of t;. We propose the following requirement of time consistency of

*I am very grateful to Johan van Benthem and Yde Venema for the extreme care with which they
read the first draft and for important suggestions on how to improve the paper. I also benefited
from comments by Patrick Blackburn, Joe Halpern, Maarten de Rijke, Richmond Thomason, Frank
Wolter and an anonymous referee.



prediction. Suppose that at time ¢; a conceivable future development is represented
by the path titots (that is, t1 <. ta and t2 <. t3). This is shown in Figure 1, where
a continuous arrow labelled ‘¢’ from ¢ to ¢’ denotes that ¢ <. t’. Suppose also that
ts lies in the predicted future of ¢; (that is, t; <, t3: this is shown in Figure 1 by a
dotted arrow labelled ‘p’ from ¢; to t3). Then we impose the following requirements:

(a) since reaching t3 requires going through to, t5 should lie in the predicted future
of t; (that is, 1 <, t2), and

(b) since reaching t, is a partial realization of (is consistent with) the prediction that
ts will be reached, the prediction should continue to hold at s, that is, t3 should
be in the predicted future of ty (t2 <p t3).

Figure 1

It is worth stressing that these two requirements are imposed within a framework
where there is a unique path from t; to t3, and to belongs to that path. Indeed, the
characteristic feature of branching time logic is that each instant has a unique past
history (while the future is open). We provide a sound and complete axiomatization
of this notion of consistency of prediction.

2. A minimal logic of prediction

Definition 2.1. A branching-time frame is a triple F = (T, <., <,) where T is a
(possibly infinite) set of instants and <. and <, are binary relations on T satisfying
the following properties, Vt{,ts,t3 € T,

(R.0) antisymmetry of <.: if ¢t; <. to then to £, t;

(R.1) transitivity of <.: if #; <.tz and t5 <. t5 then t; <, 3

(R.2) backward linearity of <.: if t; <. t3 and to <. t3 then either t; =g or t1 <. ty or t3 <. t1
(R.3) <, subrelation of <: if 1 <, ty then 1 < t3.

The interpretation of t; <. tg is that t5 is in the conceivable future of t1, while
if t1 <, to we say that t3 is in the predicted future of t1. (R.0)-(R.2) constitute the
definition of branching time in temporal logic.! In particular, (R.2) expresses the

1See, for example, van Benthem (1991), Burgess (1984), Goldblatt (1992), @hrstrgm and Hasle
(1995).



notion that, while a given moment may have different possible futures, its past is
unique. In other words, there is at most one path between any two instants. (R.3)
captures the notion that predicting the future consists in selecting a subset of the
conceivable future states: those that are believed to be most plausible. Note that
it is not assumed that the predicted future of a given moment be a unique history
following that moment.? Furthermore, there is no requirement that the predicted
future of a given moment be a proper subset of its conceivable future, that is, vague
or trivial predictions are allowed.® As argued in the Introduction, the following seems
a natural “consistency” requirement: if £3 is in the predicted future of ¢;, and ¢, is on
the unique <.-path from ¢; to t3 then (i) t2 should be in the predicted future of ¢; and
(ii) t3 should be in the predicted future of to. Formally (‘CP’ stands for ‘Consistency
of Prediction’), Vty,te,t5 € T,

(CP) if #; =p t3 and tq <. to and t5 <, t3 then =p to and to =p t3.
The proof of the following lemma is straightforward and is omitted.*

Lemma 2.2. In a branching-time frame, (CP) is equivalent to the conjunction of the

following two properties:
(R.4) backward linearity of <,: if t <, t3 and ty <, t3 then eithert; =ty orty <, taorty <, t
(R.5) ifty <, t3 and ty <, t3 then either (a) t; =tyor (b) ta <. t1 or (c) t; <. ta and ty <, ts.

Definition 2.3. A P-frame (P stands for ‘Prediction’) is a branching-time frame that
satisfies (R.4) and (R.5).

We now turn to the syntax. We consider a propositional language with four modal
operators: G, H., G, and H,. The intended interpretation is as follows:
G.p : ‘it is going to be the case in every conceivable future that ¢”
Gp¢ :  “it is going to be the case in every predicted future that ¢”
H.¢p: “it has always been the case that ¢”
Hyp: “at every past date at which today was predicted it was the case that ¢”.
The formal language is built in the usual way from a countable set S of sentence

letters, the connectives — and V (from which the other connectives A, — and < are

defined as usual) and the modal operators. Let F.¢ def -G, P, def —H.—¢,

Foo def »—¢ and P, def —H,—¢. Thus, for example, the intended interpretation

of F,¢ (resp. Fpp) is “at some conceivable (resp. predicted) future date it will be the
case that ¢ 7.

Given a frame (T, <., <) one obtains a model based on it by adding a function
V : 8 — 2% (where 27 denotes the set of subsets of T) that associates with every

?That is, we do not require that if t <, ¢ and t <, t" then either t’ = t" or t' <.t or t” <. t'.

3For example, suppose that T = {t1,t2,t3,t4} and <= {(t1,t2), (t1,t3), (t1,ts)}. Suppose also
that to is a state where it is sunny, t3 is a state where it rains and t4 is a state where it snows. Then
<p == corresponds to the trivial prediction “tomorrow either it will be sunny or it will rain or it
will snow”, while <, = {(t1,t2), (t1,t3)} corresponds to the somewhat vague prediction “tomorrow
either it will be sunny or it will rain (but it will not snow)” and <p, = {(t1,t2)} corresponds to the
sharp prediction “tomorrow it will be sunny”.

4Detailed proofs of all the results given in this paper can be found in Bonanno (1998).



sentence letter ¢ the set of dates at which ¢ is true. Given a model and a formula
¢, the truth set of ¢, denoted by ||¢||, is defined as usual. In particular, ||G.¢| =
{teT :Vvt' eTift <. t' thent’ € ||p||}, ||Gpp|| ={t €T :Vt' € T if t <, ' then t’ €
etc. Thus G.¢ (resp. Gp¢) is true at time ¢ if ¢ is true at every conceivable (resp.
predicted) future of ¢, while F.¢ (resp. Fp¢) is true at time t if ¢ is true at some
conceivable (resp. predicted) future of ¢. Similarly for H.p, Hpp, P.p and P,p. A
formula ¢ is valid in a model if ||¢|| = T, that is, if ¢ is true at every date t € T. A
formula ¢ is valid in a frame if it is valid in every model based on it. Consider the
following axiom schemata:

(Al) Gep— G.Geop

(A.2) P.pAPp— PpAY)V Po(pAPip)V Po(Pep A1)
(A3) Gep— Gpop

(Ad)  Ppp ANPpp — Py(@ AY)V Pyp(d A Bph) V Py(Bpp A 0)
(A5)  Byd A Putp— Po(dA)V Pl A Pu) V Pyl Pop A )

The following characterization is straightforward and its proof is omitted.

Lemma 2.4. Let F = (T, <., <p) be an arbitrary (not necessarily branching-time)
frame. Then, fori =1,...,5, F satisfies (R.i) if and only if (A.i) is valid in F.

We denote by Ly the basic system of temporal logic (see Burgess, 1984) and by L
be the extension of Ly obtained by adding (A.1)-(A.5).

Theorem 2.5. L is sound and complete with respect to the class of P-frames, that
is, a formula is a theorem of I if and only if it valid in every P-frame.

Soundness follows from Lemma 2.4. For the completeness proof we follow the
constructive approach put forward by Burgess (1984). We shall only give the main
steps. Let MaxLL be the set of maximal L-consistent sets of formulae. Define the
following relations on MazlL: A —. B if and only if, for every formula ¢, if G.¢ € A
then ¢ € B, and A —, B if and only if, for every formula ¢, if G,¢ € A then ¢ € B.

The next two lemmas are well-known (cf. Burgess 1984, Lemmas 1.6 and 1.7).

Lemma 2.6. Let A,B € MazLL. Then the following are equivalent (as well as the
corresponding versions with the ‘p’ subscript replaced by the ‘c’ subscript): (i) A —,
B, (ii) for every formula ¢, if ¢ € A then P,¢ € B, (iii) for every formula ¢, if € B
then F,¢ € A, (iv) for every formula ¢, if H,¢ € B then ¢ € A.

Lemma 2.7. Let B € MaxzlL and ¢ be any formula. Then (a) if F.¢ € B, then there
exists a D € MaxlL with B —. D and ¢ € D; (b) if P.¢p € B, then there exists an
A € MazL with A —, B and ¢ € A; (c) if F,¢ € B, then there exists a D € MaxL
with B —, D and ¢ € D; (d) if P,¢ € B, then there exists an A € MaxL with
A—, Band ¢ € A.

Lemma 2.8. The relation —». on MazlLL is transitive and backward linear, —, is a
subrelation of —. and is backward linear, —. and —»,, satisfy the following property:
if A—, Dand B —, Dtheneither A= Bor B —. A or(A—, Band B —, D).



Proof. We shall only prove the last property. Suppose that A —, D, B —. D,
A # Band B /4. A (. denotes the negation of —.). We need to show that A —. B
and B —, D. Since A # B, there exists a ¢ € A such that =¢ € B. Since B /4. A,
by Lemma 2.6 there exists a 1/ € B such that =P.¢» € A. Thus
dN-PapeA and Y N\—¢p€E B. (2.1)

Suppose that A 4. B. Then by Lemma 2.6 there exists § € A such that —-P.0 € B.
Then, using (2.1),

ONPN-Pape A and Y AN—-¢pN-P.0 € B. (2.2)
Since A —,, D, it follows from the first part of (2.2) and Lemma 2.6 that,

Py (O A A—Paap) € D. (2.3)
Since B —». D, by the second part of (2.2) and Lemma 2.6,

P (¢ A—p A —Puf) € D. (2.4)

Thus, by (2.3) and (2.4) and axiom (A.5), either (i) P,(OAGA-Pp NYA-PA-P.0) €

D,or (ii) P, (0 N\ ¢ N=Pap NP, (0 AN=¢p A—P.0)) € D, or (iil) P, (P. (0 Ap AN —Pp) Nb A=p AN—P.0) €
D. Case (i) is impossible because ¢ A ¢ is a contradiction. Case (ii) is impossible

because P, (¢ A —¢ A =P.0) implies P.1, contradicting —P,1. Case (iii) is impossi-

ble, since P, (60 A ¢ A —P.¢) implies P.f, contradicting - P.f. Hence it must be that

A —. B. Suppose now that B /4, D. Then, by Lemma 2.6, 3y € B such that

~PyyeD (2.5)
Using the second part of (2.1),

YAY A€ B. (2.6)
Since A —, D, by the first part of (2.1) and Lemma 2.6,

P, (¢ N—=P) € D. (2.7)
Since B —. D, by (2.6) and Lemma 2.6,

Py A A=) € D. (2.8)

Thus by (2.7) and (2.8) and axiom (A.5) either (i) P,(¢ APy AyAYA—9) € D, or (ii)
P, (pN—=Pp NP, (yANp A=) € D, or (iii) Py(P.(p AN —Petp) Ay AN A=) € D.
Case (i) is impossible because ¢ A—¢ is a contradiction. Case (ii) is impossible because
P.(y Ay A=) implies Py, contradicting —P,1. Case (iii) is impossible because it
implies P,y € D, contradicting (2.5). Thus it must be B —, D. B



Definition 2.9. A partial canonical P-frame is a quadruple (X, <., <, f) such that:
(1) X is a finite set, (2) (X, <., <p) is a P-frame and (3) f : X — MazL. A partial
canonical P-frame is coherent if, Vx,y € X, (1) if x <. y then f(x) —. f(y), and (2)
if x <, y then f(x) —, f(y).

Let ¢ be a formula and (X, <., <y, f) a partial canonical P-frame. We say that
F.¢ (resp. Fp) is not satisfied at v € X, if Fop € f(x) (resp. Fp¢ € f(x)) and there
isnoy € X such that x <,y (resp. x <, y) and ¢ € f(y). Similarly for P.¢ and Ppy¢.

Given partial canonical P-frames (X, <¢, <y, f) and (X', <0, <!, f') we say that
the latter is an extension of the former if : (1) X C X', (2) <. C <, (3) <, €<,
and (4) f C f'.

The following lemma gives the main step in the completeness proof.

Lemma 2.10. Extension Lemma. Let (X, <., <p, f) be a coherent partial canon-
ical P-frame and let ¢ be a formula.

(a) Suppose that F.¢ is not satisfied at x € X. Then there exists a coherent extension
(X', <, =<0, f') of (X, <, <p, [) and ay € X' such that x <,y and ¢ € f(y).

(b) Suppose that Fy,¢ is not satisfied at x € X. Then there exists a coherent extension
(X', <L, =<0, f') and ay € X' such that x <!,y and ¢ € f(y).

(c) Suppose that P.¢ is not satisfied at x € X. Then there exists a coherent extension
(X', <L, =0 f") and ay € X’ such that y <, x and ¢ € f(y).

(d) Suppose that P,¢ is not satisfied at x € X. Then there exists a coherent extension
(X', <., <0, f') and ay € X' such that y <), x and ¢ € f(y).

Proof. (a) Let x € X and F.¢ € f(x). By Lemma 2.7, 3B € MazL such that
f(z) -, B and ¢ € B. Construct the following extension of (X, <., <,, f) obtained
by (i) adding a new point y, (ii) assigning the set B to y, and (iii) adding the pair (z, y)
to <. (and any new pair needed to preserve transitivity), while no pairs are added to
<p- Let y ¢ X and X' = X U{y}, <.==<. U{(z,9)} U{(v,y) : v <. 7}, <, ==p
and f' = fU{(y, B)}. That the new frame is coherent follows from transitivity of —.
(cf. Lemma 2.8). It is also clear that the new frame is a P-frame, since the original
frame was a P-frame, transitivity of <. has been preserved and no <,-pairs have been
added.

(b) Let 2 € X and Fp¢ € f(z). By Lemma 2.7 3B € MaxL such that f(x) -, B
and ¢ € B. Construct the following extension: let y ¢ X and X' = X U {y},
<.==c U{(z,9)} U{(v,y) : v < o}, <, ==, U{(z,y)} and f" = fU{(y,B)}.
That the new frame is coherent follows from Lemma 2.8 (—, subrelation of —, and
transitivity of —.). Furthermore, given that the original frame was a P-frame, the
new frame is also a P-frame: transitivity of <. has been preserved, and violation of
(CP) in the new frame could only occur if v —<; y for some v € X such that v <, x,
but no such pair (v,y) has been added to <,,.

(c) Let P.¢ € f(x) and suppose there is no y € X such that y <, « and ¢ € f(y).
We proceed by induction on the number n of <.-predecessors of x in X. Suppose
n = 0. Since P.¢ € f(x), by Lemma 2.7 there exists a B € MaxL such that
B —, f(z) and ¢ € B. Construct the following extension obtained by (i) adding
a new point y, (ii) assigning the set B to y, and (iii) adding the pair (y,z) to <.



(and any new pair needed to preserve transitivity), while no pairs are added to <.
Let y ¢ X and X' = X U{y}, <. ==c U{(y,2)} U{(y,v) : @ < v}, <, ==, and
f" = fU{(y,B)}. Coherence follows from transitivity of —».. Furthermore the new
frame is a P-frame, since the original frame was a P-frame, transitivity of <. has
been preserved and no <,-pairs have been added. Suppose now that n > 1. Let 2’ be
the immediate < -predecessor of z in X (recall that X is finite). By our supposition,
¢ ¢ f(z'). If P.¢p € f(x') then we can reduce (by appealing to transitivity of <. and
—.) to the case n — 1 by replacing = with 2’. Assume therefore that P.p ¢ f(2').
Then, by definition of maximal consistent set, (= A =P.¢) € f(a’). We need to
distinguish two cases. CASE 1: 2’ £, . By Lemma 2.7, since P.¢ € f(x) there
exists a B € MazL such that B —. f(z) and ¢ € B. Construct the following
extension, obtained by (i) inserting a new point y between 2’ and x and assigning the
set B to it, (ii) adding the pairs (2/,y) and (y, ) to <. (and any new pair needed to
preserve transitivity), while no pairs are added to <,, . Let y ¢ X and X' = X U{y},
<.==c U{(@,y), (y,2)} U{(v,y) : v < 2"} U{(y,w) : @ <. w}, <, ==, and
f" = fuU{(y,B)}. To verify coherence, besides appealing to transitivity of —., we
need to show that f(z') -, B. By coherence of (X, <., <, f), f(z') = f(x). Thus,
since B —. f(x), by backward linearity of —. (cf. Lemma 2.8) either (i) f(z') = B
or (ii) B —. f(2) or (iii) f(2) —. B. Case (i) is ruled out by ¢ € B and ¢ ¢ f(z').
Case (ii) is ruled out by ¢ € B and P.¢ ¢ f(z’) (cf. Lemma 2.6). Thus f(z’') —. B.
Furthermore, the new frame is a P-frame, since the original frame was a P-frame,
transitivity of <. has been preserved and inserting a point between x’ and x without
adding any —<p-pairs would have violated property (CP) only if it had been the case
that ¢’ <, z, contrary to our supposition. CASE 2: 2/ <, x. By coherence of
(X, <¢y <p, f), since (¢ A P.p) € f(2'), Py(—p A —=Pep) € f(z) (cf. Lemma 2.6).
Thus Py,(—¢ A ~Pep) A Pogp € f(x). By definition of maximal consistent set, axiom
(A.5) belongs to f(x). Thus

Pp(—‘(b A=P.p A ¢) vV Pp(—‘(,zs A=P.p N Pc¢) \YJ PP(PC(—!(,ZS A~ CQS) A (;5) S f(l‘)

But P,(—¢A-P.pAp) ¢ f(x) because (mpA¢) is a contradiction. For the same reason,
P,(=¢p AN Pep A\ Pep) ¢ f(x). Thus Po(Po(—¢p A = Pepp) A @) € f(x). Then by Lemma
2.7, 3D € MazL such that D —, f(z) and P.(=¢ A =P.¢) A ¢ € D. Construct the
following extension: let y ¢ X and X' = X U{y}, <, =<, U{(Z,v), (v, 2)} U{(v,y) :
v < 2P U{(y,w) 12 < wh, <,==<, U{(2",y),(y,2)} and f' = f U {(y,D)}.
To verify coherence, besides appealing to transitivity of —». and the fact that —,
is a subrelation of —., we need to show that f(z’) —», D. Since f(a') —, f(z) (by
coherence of (X, <., <p, f)) and D —, f(x), by backward linearity of —, (cf. Lemma
2.8) either (i) f(2') = D or (ii) D —, f(2') or (iii) f(2’) —, D. Case (i) is ruled out
by ¢ € D and ¢ ¢ f(2'). Suppose (ii) were the case. Then, since ¢ € D, P,p € f(z').
But by (A.3) P,¢ — P.p € f(z'). Thus we would get P.¢p € f(2’), contradicting the
fact that -P.¢ € f(2’). Hence it must be f(2’) —», D. Furthermore, given that the
original frame was a P-frame, the new frame is also P-frame: transitivity of <. has
been preserved and property (CP) is preserved since the new path from 2z’ to z is
both a <,-path and a <.-path and no pairs of the form (v,y) with v <, 2’ or (y,w)
with <. w have been added to <,,.



(d) Let P,¢ € f(x) and suppose there is no y € X such that y <, z and ¢ € f(y).
Since P,¢ € f(z), by Lemma 2.7 there exists a B € MazL such that

B —, f(z) and ¢ € B. (2.9)

We need to distinguish several cases. CASE 1: x has no <.-predecessors (hence
no <p-predecessors) in X. Construct the following extension: let y ¢ X and X' =
X U{yh, <= <e U{(y )} U{(5v) @ <c v}, <b— <, U{ (. 2)}, /' = £ U{(5, B)}-
In this case coherence follows from (2.9), transitivity of —. and the fact that —, is a
subrelation of —», (cf. Lemma 2.8). Furthermore, given that the original frame was
a P-frame, the new frame is also a P-frame: transitivity of <. has been preserved
and property (CP) is preserved since no pair of the form (y, w) with z <, w has been
added to <,. CASE 2: z has at least one <.-predecessor but no <,-predecessors
in X. Let 2’ be the immediate <.-predecessor of z in X (recall that X is finite). If
either B = f(a’) or f(z') —, f(z) and ¢ € f(2’) then it is sufficient to add (z',z) to
~<p- Suppose therefore that B # f(a) and either f(z') 4, f(z) or f(2') —, f(x) and
¢ ¢ f(a'). The case B # f(2’) and f(z’) 4, f(z), in conjunction with B —, f(x)
and f(2') —. f(z) (the latter following from coherence of the given frame), yields, by
Lemma 2.8, f(2’) —. B. Construct the following extension: let y ¢ X, X' = XU{y},
<= < U{( ), (g, )} U {(w, ) w0 <e 2} UL(9,2) s & <e 2}, <= <p UL (0, 2)],
f"= fU{(y, B)}. Coherence follows from (2.9), the fact that f(z') —. B, transitivity
of —. and the fact that —, is a subrelation of —», (cf. Lemma 2.8). Furthermore,
the new frame is a P-frame, since transitivity of <. has been preserved and violation
of property (CP) in the new frame could only arise if in the original frame w <, = for
some w € X with either w = 2’ or w <. 2’/. However, since the original frame was a
P-frame, in either case this would require «’ <,, z, which, by coherence of the original
frame, would imply that f(z') —, f(z), contradicting our supposition. The only case
that remains to be considered is the case where f(z') —, f(z) and ¢ ¢ f(2’). In this
case, by adding (2/,z) to <, (coherence as well as the property of being a P-frame
are clearly preserved) we can reduce to Case 3 below where x has at least one <,,-
predecessor. CASE 3: z has at least one <p-predecessor (hence also at least one
<c-predecessor). Denote x by g and let x1,...,x,, (n > 1) be the < .-predecessors of
2o numbered so that, Vk = 1, ..., n, x is the immediate < .-predecessor of z:;_; (recall
that X is finite). By property (CP), there is an m < n such that the <,-predecessors
of ¢ are precisely 1, ..., 2, (and Vk = 1,...,m, 2}, is the immediate <,-predecessor
of z_1).5 Since P,¢ is not satisfied at xq, by coherence it must be that ¢ ¢ f(z)
for all k = 1,...,m. Thus, since ¢ € B, B # f(xy) for all k =1,...,m. Furthermore,
we can also assume that B #£ f(xz¢) (otherwise it would be sufficient to (i) add a copy
of xg, call it y, between xg and z1, (ii) add («1,y) and (y,zo) (and any pairs needed
to preserve transitivity) to both <, and <,). Thus

B # f(ag), Vk=0,...m (2.10)

By coherence of the given frame, f(zy) —, f(zo) Yk =1, ...,m. This, together with
(2.9) and (2.10) yields, by backward linearity of —, (cf. Lemma 2.8),

5By (CP), if zy, is a <p-predecessor of zg then the entire path from zj, to zo belongs to <p .



Vk =1,...,m, either f(zg) -, B or B —, f(zk). (2.11)

Suppose first that f(xy) —, B for some k € {1,...,m}. Let ko be the smallest such
integer. Then, for all j € {1, ...,ko — 1}, f(z;) #, B. It follows from this and (2.11)
that, for all j € {1,...,ko — 1}, B —, f(x;). Thus, using also (2.9)

Fxr,) —p B and Vj € {0,....ko — 1}, B —, f(x;). (2.12)

Construct the following extension: lety ¢ X, X' = XU{y}, <. =< U{(%k,, ), (¥, T, 1) }U
{(w,9) + 0 <e a1} UL(5:2) 501 <e 2}, <h=<p U{ (g0} U { (525 = J —
0,....k0 — 1}, f' = fU{(y, B)}. Coherence follows from transitivity of —., the fact
that —, is a subrelation of —, (cf. Lemma 2.8) and (2.12). Furthermore, that the
new frame is a P-frame is clear from the construction (in particular, both (zy,,y) and
(y, x,—1) have been added to <,,) and the fact that the original frame was a P-frame.
The only case that remains to be considered is the case where f(xy) #, B for all
k =1,..,m. Then, by (2.11), B —, f(w), for all £ = 0,...,m. It follows from this
and Lemma 2.6 that P,¢ € f(xy) for all & = 1,...,m. In particular, P,¢ € f(zy).
Since ¥, has no <,-predecessor in X, we can now construct a coherent extension of
the initial frame where P,¢ is satisfied at x,, as explained in CASE 1 (if n = m)
or in CASE 2 (if n > m)® using the set B of (2.9). The only modification of that
construction consists in adding also the pair (y,z) to <, (and to <., as well as
any pairs needed to preserve transitivity), thereby guaranteeing satistaction of P,¢ at
xg. Coherence is guaranteed by the fact that B —, f(x¢) (cf. (2.9)). Furthermore,
property (CP) is preserved since the entire <.-path from y to z¢ belongs to <,. W

The final step in the completeness proof (construction of a perfect chronicle) is
entirely standard (cf. Burgess, 1984) and will be omitted.
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6This final step involves the possibility of going back to Case 2. Under Case 2 the possibility of a
reduction to Case 3 arose. Note, however, that this does not involve a circular reasoning, because X
is finite and hence the number of <.-predecessors of z is finite. Each reduction (from Case 3 to Case
2 or vice versa) does not alter the number of <.-predecessors of z while it shifts the argument up one
step in the chain of <c-predecessors of z (it turns an immediate <.-predecessor into a <p-predecessor
also). Thus eventually one must fall within Case 1.



