

Rationality requirements for preferences

Set of outcomes:
$$W = \{a, b, c, d\}$$

 $R = \{(a,b), (a,d), (b,c), (c,d)\}$
Does R satisfy transitivity?
No: $(a,b) \in R$ and $(b,c) \in R$
but $(a,c) \notin R$

Does R satisfy completeness? No: $(a,c) \notin R$ and $(c,a) \notin R$

REVEALED PREFERENCE

 $Z = \{a, b, c, d, e, f\}$

Observations:

 $\{a, c, f\} \longrightarrow c$ (1) $\{a, d, b\} \longrightarrow a$ (2)

 $\{d, e, f\} \longrightarrow f$ (3) $\{a, f\} \longrightarrow f$ (4)

Assume also that his ranking is a strict ranking (no indifference) Is there a complete and transitive strict ranking of Z that rationalizes the observations?

C is the best outrome

$$Z = \{a, b, c, d, e, f\}$$

Observations:

$$\{a, c, f\} \rightarrow c \quad (1) \qquad \{a, d, b\} \rightarrow a \quad (2)$$

$$\{d, e, f\} \rightarrow f \quad (3) \qquad \{a, f\} \rightarrow f \quad (4)$$
Frow (3) $f > d \quad and \quad f > e$
From (a) $f > a$
Need $f > b$: From (4) $f > a$ From (2) $a > b$

$$by \quad transitivity \quad f > b$$

$$f \quad is \quad the \quad sensel best$$
best $c \qquad c \qquad c$

$$f \qquad f \qquad f \qquad f$$

$$worst \quad d \qquad d \qquad \vdots$$

Decisions under **uncertainty**

S_1	s_2	S_3
Z_1	Z_2	Z_3
Z_4	Z_5	Z_6
Z ₇	Z_8	Z_9
Z ₁₀	Z_{11}	Z_{12}
Z ₁₃	Z ₁₄	Z ₁₅
	S_1 Z_1 Z_4 Z_7 Z_{10} Z_{13}	$egin{array}{cccc} S_1 & S_2 & & & & & & & & & & & & & & & & & & &$

• Compare a_3 and a_2 : $2_7 > 2_4$, $2_8 > 2_5$, $2_9 > 2_4$ a_3 a_3 a_3 a_3 a_3 strictly buildetes a_2 • Compare a_2 and a_1 : $2_4 \sim 2_1$, $2_5 > 2_2$, $2_6 \sim 2_3$ a_1 or a_2 a_2 a_1 or a_2 a_2 weakly buildetes a_1 • Compare a_3 to a_1 : a_3 strictly buildetes a_1 a_3 is a strictly dominant action. Easier to see with utilities:

	state \rightarrow	<i>S</i> ₁	S_2	<i>S</i> ₃			UTILIT	Y
	act ↓				best	Z_8	4	
	$a_{_1}$	Z_1	Z_2	Z_3		Z_{7}, Z_{9}	3	
	a_2	Z_A	Z_5	Z_6		z_1, z_3, z_4, z_4	Z ₆ 2	
	a_2	\overline{Z}_{7}	Z_{\circ}	Z_0		Z_5	7	
	3	/	8	9	worst	Z_2	0	
_	state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃				
	all a	2	0	2				
		<u> </u>	1	2				
	a 2	2	Ι	2				
	a_3	3	4	3				0
	G ₄	2	1	2		if Si	if Sz	if S3
(Lo mpare	9-	3 t.	, a ₂) <u> </u>	3>2	4 > 1	3 >2
						93 92	G3 G2	G3 G2
Co	ompare (Gzt	ъG	1 I	C	2 = 2	1 > 0 $a_2 = a_1$	2 = 2
Co	Supare C	â 3 - 1	tь	a ,] 3 > 2	470	3>2
601	mpare Gz	t to	Gz			2 = 2	1 = 7	Z=2
	·		G	z cu	12 GA	are El	QUIVALE,	NT

Act *a* weakly dominates act *b* if, for every state *s*, $a(s) \succeq b(s)$ and, furthermore, there is at least one state \hat{s} such that $a(\hat{s}) \succ b(\hat{s})$. Using utility, $U(a(s)) \ge U(b(s))$ for every state *s* and there is at least one state \hat{s} such that $U(a(\hat{s})) > U(b(\hat{s}))$.

> state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow $a_1 \quad 1 \quad 3 \quad 1$ $a_2 \quad 0 \quad 2 \quad 1$ $a_3 \quad 1 \quad 3 \quad 3$

- a_1 weakly dominates a_2
- a_3 weakly dominates a_1
- a_3 strictly (and thus also weakly) dominates a_2 .

a and *b* are *equivalent*, if, for every state *s*, $a(s) \sim b(s)$ or, in terms of utility, U(a(s)) = U(b(s)).

Act *a* is *weakly dominant* if, for every other act *b*, either *a* weakly dominates *b* or *a* and *b* are equivalent.

In the above example, ...

Another example:

state
$$\rightarrow s_1 \ s_2 \ s_3 \ s_4$$

act \downarrow
 $a_1 \ a_2 \ a_3 \ 1 \ 3 \ 3 \ 2$
 $a_3 \ 1 \ 3 \ 3 \ 2$
 $a_1 \ a_3 \ 1 \ 3 \ 3 \ 2$
 $a_1 \ a_3 \ 1 \ 3 \ 3 \ 2$
 $a_2 \ a_3 \ a_3 \ a_3 \ a_3 \ a_2$
 $a_3 \ a_3 \ a$

az is a weakly bouinaur act

You are bidding against a computer for an item that you value at \$30. The allowed bids are \$10, \$20, \$30, \$40 and \$50. The computer will pick one of these bids randomly. Let *x* be the bid generated by the computer. If your bid is greater than or equal to *x* then you win the object and you **pay** not your bid but the **computer's bid**. If your bid is less than *x* then you get nothing and pay nothing.

Now same as above, but if you win the object and pay your own bid.

\$10	\$20	\$30	\$40	\$50
	\$10	\$10 \$20	\$10 \$20 \$30	\$10 \$20 \$30 \$40