★ DominanceMaxiMinLexiMin

- Money lotteries and attitudes to risk
- ★ Decision trees

Backward induction

Example of a complex decision tree

Expected Utility Theory

state \rightarrow	<i>S</i> ₁	<i>s</i> ₂	<i>s</i> ₃	Dominance:
act ↓				
a_1	4	3	1	
a_2	6	2	2	
a_3	5	3	2	
a_4	6	1	0	
a_5	3	2	5	

So we can simplify

state
$$\rightarrow$$
 s_1 s_2 s_3
act \downarrow
 a_2 6 2 2
 a_3 5 3 2
 a_5 3 2 5

What then?

First a different example:

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow $a_1 \quad 4 \quad 3 \quad 1$ $a_2 \quad 3 \quad 2 \quad 2$ $a_3 \quad 5 \quad 3 \quad 2$ $a_4 \quad 6 \quad 1 \quad 0$ $a_5 \quad 3 \quad 3 \quad 4$

One criterion that can be used is the **MaxiMin** criterion.

state
$$\rightarrow$$
 s_1 s_2 s_3
act \downarrow
 a_2 6 2 2
 a_3 5 3 2
 a_5 3 2 5

Now back to the previous problem:

MaxiMin =

A refinement is the **LexiMin**

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow $a \quad 6 \quad 2 \quad 2$

Here the LexiMin picks

One more example:

state →	<i>s</i> ₁	<i>S</i> ₂	<i>s</i> ₃	<i>S</i> ₄	
act ↓					MaxiMin =
a_1	2	3	1	5	
a_2	6	2	2	3	Τ
a_3	5	3	2	4	LexiMin =
a_4	6	1	0	7	
a_5	3	2	5	1	

Special case: outcomes are sums of money

state $\rightarrow s_1 \quad s_2 \quad s_3 \quad s_4$ act \downarrow $a_1 \quad \$12 \quad \$30 \quad \$0 \quad \18 $a_2 \quad \$36 \quad \$6 \quad \$24 \quad \12

 a_3 \$6 \$42 \$12 \$0

Suppose that we are able to assign probabilities to the states:

state \rightarrow	<i>S</i> ₁	S_2	<i>S</i> ₃	S_4
	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{5}{12}$	$\frac{1}{12}$

- a_1 is the lottery
- a_2 is the lottery
- a_3 is the lottery

The expected values are:

Definition of attitude to risk

Given a money lottery L, imagine giving the individual a choice between L and the expected value of L for sure, that is, the choice

between
$$\binom{\mathbb{E}[L]}{1}$$
 and L or, written more simply, between $\mathbb{E}[L]$ and L

If she says that

- $\mathbb{E}[L] \succ L$ we say that she is **risk** relative to L
- $\mathbb{E}[L] \sim L$ we say that she is **risk** relative to L
- $L \succ \mathbb{E}[L]$ we say that she is **risk** relative to L

So in the above example, if we assume that the agent is risk neutral relative to every lottery and her preferences are transitive, then, since

 $\mathbb{E}[a_1] = 10.5$ $\mathbb{E}[a_2] = 24$ $\mathbb{E}[a_3] = 14$ Can we infer risk attitudes from choices?

Let $L = \begin{pmatrix} \$40 & \$60 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ Then $\mathbb{E}[L] =$

Suppose Ann's preferences are transitive, she prefers more money to less and she says that she prefers \$49 to *L*.

Suppose Bob's preferences are transitive, he prefers more money to less and he says that he prefers 51 to *L*.

DECISION TREES

Decision to buy a house

- **NEW** (built 2015), costs \$350,000
- **OLD** (built 1980), costs \$300,000

You worry about the total cost over the next 5 years.

- New houses have a 25% probability of requiring a repair within 5 years and, on average, the repair would cost \$20,000.
- Old houses have a 60% probability of requiring a repair within 5 years and, on average, the repair would cost \$100,000.

Your options are: (1) buy house N, (2) buy house O or (3) pay \$1,000 to an **inspector** to inspect both houses. The inspector will be able to tell you if each house is good or bad.

- A **good new** house has probability 20% of requiring a repair (that costs \$20,000) and probability 80% of requiring no repair.
- A **bad new** house has probability 30% of requiring a repair (that costs \$20,000) and probability 70% of requiring no repair.
- A **good old** house has probability 50% of requiring a repair (that costs \$100,000) and probability 50% of requiring no repair.
- A **bad old** house has probability 70% of requiring a repair (that costs \$100,000) and probability 30% of requiring no repair.

Based on past data, the probabilities that the inspector will come up with the various verdicts are:

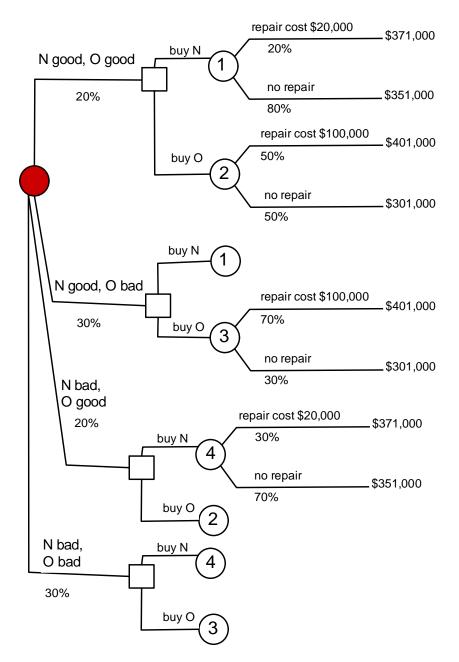
- Both good: 20%
- Both bad: 30%
- Old house good, new house bad: 20%
- Old house bad, new house good: 30%.

THIS IS A LOT OF INFORMATION!

- **NEW** costs \$350,000. **New** houses have a 25% probability of requiring a repair within 5 years and, on average, the repair would cost \$20,000.
- **OLD** costs \$300,000. **Old** houses have a 60% probability of requiring a repair within 5 years and, on average, the repair would cost \$100,000.
- You can also hire an inspector and pay her \$1,000

Assuming risk neutrality

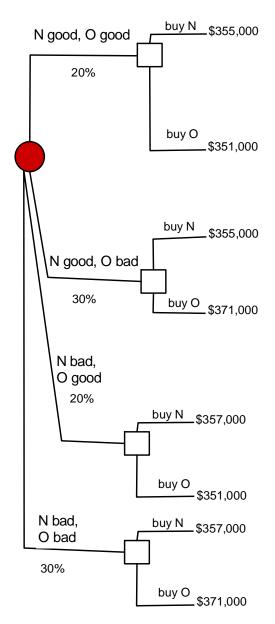
The "hire inspector" module is as follows:



The expected values of the lotteries are:

- For (1):
- For (2):
- For ③:
- For (4):

Thus we can reduce this part of the tree to:



Thus we can reduce the option of hiring the inspector to the following lottery:

Whose expected value is

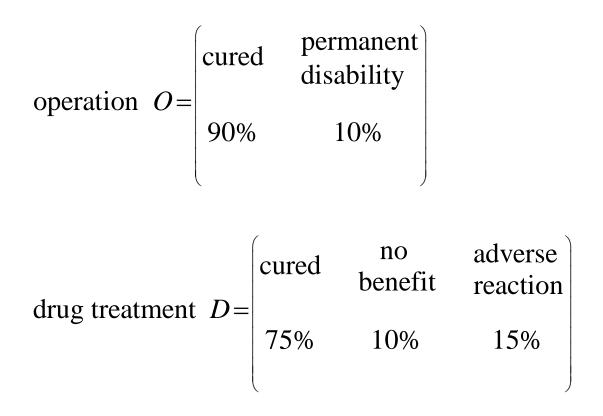
The optimal decision is:

1. hire the inspector and then

2. (a) if both good, buy

- (b) if N good and O bad, buy
- (c) if N bad and O good, buy

(d) if both bad, buy



What is the expected value of lottery O? What is the expected value of lottery D? Which of the two lotteries is better?

EXPECTED UTILITY THEORY

 $Z = \{z_1, z_2, ..., z_m\}$ set of basic outcomes.

A lottery is a probability distribution over Z: $L = \begin{pmatrix} z_1 & z_2 & \dots & z_m \\ p_1 & p_2 & \dots & p_m \end{pmatrix}$

Let *L* be the set of lotteries. Suppose that the agent has a ranking \succeq of the elements of *L*:

if $L = \begin{pmatrix} z_1 & z_2 & \cdots & z_m \\ p_1 & p_2 & \cdots & p_m \end{pmatrix}$ and $M = \begin{pmatrix} z_1 & z_2 & \cdots & z_m \\ q_1 & q_2 & \cdots & q_m \end{pmatrix}$ then

 $L \succ M$ means that

 $L \sim M$ means that

• • •

Rationality constraints on \gtrsim (von Neumann-Morgenstern axioms):

Theorem 1 Let $Z = \{z_1, z_2, ..., z_m\}$ be a set of basic outcomes and L the set of lotteries over Z. If \succeq satisfies the von Neumann-Morgenstern axionm then there exists a function $U: Z \to \mathbb{R}$, called a *von Neumann-Morgenstern utility function*, that assigns a number to every basic outcome and is such that, for any two lotteries $L = \begin{pmatrix} z_1 & z_2 & \cdots & z_m \\ p_1 & p_2 & \cdots & p_m \end{pmatrix}$ and $M = \begin{pmatrix} z_1 & z_2 & \cdots & z_m \\ q_1 & q_2 & \cdots & q_m \end{pmatrix}$,

$$L \succ M$$
 if and only if $\underbrace{p_1 U(z_1) + p_2 U(z_2) + \dots + p_m U(z_m)}_{\text{expected utility of lottery } L} \geq \underbrace{q_1 U(z_1) + q_2 U(z_2) + \dots + q_m U(z_m)}_{\text{expected utility of lottery } M}$

and

$$L \sim M$$
 if and only if $\underbrace{p_1 U(z_1) + p_2 U(z_2) + ... + p_m U(z_m)}_{Q_1 \to Q_2 \to Q_2} = \underbrace{q_1 U(z_1) + q_2 U(z_2) + ... + q_m U(z_m)}_{Q_2 \to Q_2 \to Q_2 \to Q_2}$

expected utility of lottery L

expected utility of lottery M

2.25 3.33

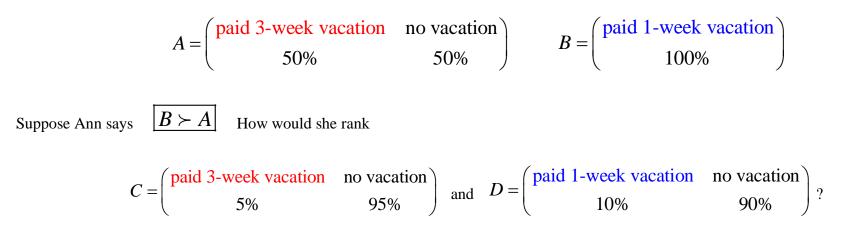
EXAMPLE 1.
$$Z = \{z_1, z_2, z_3, z_4\}$$
 $L = \begin{pmatrix} z_1 & z_2 & z_3 & z_4 \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{2}{8} \end{pmatrix}$ $M = \begin{pmatrix} z_1 & z_2 & z_3 & z_4 \\ \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{2}{6} \end{pmatrix}$
Suppose we know that $U = \begin{cases} z_1 & z_2 & z_3 & z_4 \\ 6 & 2 & 8 & 1 \end{cases}$

Then

 $\mathbb{E}[U(L)] \equiv$

 $\mathbb{E}[U(M)] \equiv$

EXAMPLE 2.



Money lotteries

 $\mathbb{E}[L] = \mathbb{E}[M] =$

Suppose Bob's vNM utility function is: $U(\$x) = \sqrt{x}$ $\mathbb{E}[U(L)] = \mathbb{E}[U(M)] =$

$$A = \begin{pmatrix} \$0 & \$100 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \qquad B = \begin{pmatrix} \$40 & \$60 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
$$\mathbb{E}[A] = \mathbb{E}[B] =$$

Suppose Bob's vNM utility function is: $U(\$x) = \sqrt{x}$

 $\mathbb{E}[U(A)] =$

 $\mathbb{E}[U(B)] =$

$$A = \begin{pmatrix} \$4 & \$6\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \qquad \qquad B = \begin{pmatrix} \$5\\ 1 \end{pmatrix}$$

$$U(\$x) = x^2$$

Re-define attitudes to risk in terms of utility:

Risk-averse if

Risk-neutral if

Risk-loving if