
 

 



Decision to buy a house 
 NEW (built 2015), costs $350,000 

 OLD (built 1980), costs $300,000 

You worry about the total cost over the next 5 years. 

 New houses have a 25% probability of requiring a repair within 5 years 
and, on average,  the repair would cost $20,000. 

 Old houses have a 60% probability of requiring a repair within 5 years 
and, on average, the repair would cost $100,000. 

Your options are: (1) buy house N, (2) buy house O or (3) pay $1,000 to 
an inspector to inspect both houses. The inspector will be able to tell 
you if each house is good or bad. 

 A good new house has probability 20% of requiring a repair (that 
costs $20,000) and probability 80% of requiring no repair. 

 A bad new house has probability 30% of requiring a repair (that 
costs $20,000) and probability 70% of requiring no repair. 

 A good old house has probability 50% of requiring a repair (that 
costs $100,000) and probability 50% of requiring no repair. 

 A bad old house has probability 70% of requiring a repair (that 
costs $100,000) and probability 30% of requiring no repair. 

Based on past data, the probabilities that the inspector will come up with 
the various verdicts are: 

- Both good: 20% 

- Both bad: 30% 

- Old house good, new house bad: 20% 

- Old house bad, new house good: 30%. 

THIS IS A LOT OF INFORMATION! 



 NEW costs $350,000. New houses have a 25% probability of 
requiring a repair within 5 years and, on average,  the repair would 
cost $20,000. 

 OLD  costs $300,000. Old houses have a 60% probability of 
requiring a repair within 5 years and, on average, the repair would 
cost $100,000. 

 You can also hire an inspector and pay her $1,000 

 

 

 

 

 

 

 

 

 

 

 

 

Assuming risk neutrality  
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The “hire inspector” module is as follows: 
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The expected values of the lotteries are: 

 For :  

 For :  

 For :  

 For :  

Thus we can reduce this part of the tree to: 
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OBJECTIVE: pay the  LOWEST   5-year cost 
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Thus we can reduce the option of hiring the inspector to the following lottery: 

 

 

 

Whose expected value is 
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The optimal decision is:  

1. hire the inspector and then 

2. (a) if both good, buy        

(b) if N good and O bad, buy       

(c) if N bad and O good, buy       

(d) if both bad, buy      



permanentcured
disability

operation  
90% 10%

O

 
 
 
 
 
 
 
 
 
 
 

   

 

   no adversecured benefit reaction
drug treatment  

75% 10% 15%
D

 
 
 
 
 
 
 
 
  
 

  

Z 22 best Z

23
Zg

worst Zz

Zz 24Z

558



Z 21 Zz 23 243

4 1

4 1 - 1

23 ¾ 23



Page 1 of 6 

EXPECTED UTILITY THEORY   

1 2{ , ,..., }mZ z z z    set of basic outcomes. 

A lottery is a probability distribution over Z:   
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Let L  be the set of lotteries. Suppose that the agent has a ranking   of the elements of L : 
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 then    

L M  means that 

L M  means that 

 

Rationality constraints on   (von Neumann-Morgenstern axioms): 
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Theorem 1  Let 1 2{ , ,..., }mZ z z z  be a set of basic outcomes and L   the set of lotteries 
over Z. If    satisfies the  von Neumann-Morgenstern axionm then there exists a function 

:U Z  ,  called a von Neumann-Morgenstern utility function, that assigns a number to 

every basic outcome and is such that, for any two lotteries 1 2
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P Z meaningles because Z might not be a number
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EXAMPLE 1.   1 2 3 4{ , , , }Z z z z z     1 2 3 4
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EXAMPLE 2. 

nopaid 3-week vacation  vacation
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Suppose Ann says    B A     How would she rank 
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