Decision trees
Backward induction

Example of a complex decision tree

Beyond money lotteries

Expected Utility Theory



Decision to buy a house
e NEW (built 2015), costs $350,000
e OLD (built 1980), costs $300,000
You worry about the total cost over the next 5 years.

e New houses have a 25% probability of requiring a repair within 5 years
and, on average, the repair would cost $20,000.

e Old houses have a 60% probability of requiring a repair within 5 years
and, on average, the repair would cost $100,000.

Your options are: (1) buy house N, (2) buy house O or (3) pay $1,000 to
an inspector to inspect both houses. The inspector will be able to tell
you if each house is good or bad.

e A good new house has probability 20% of requiring a repair (that
costs $20,000) and probability 80% of requiring no repair.

e A bad new house has probability 30% of requiring a repair (that
costs $20,000) and probability 70% of requiring no repair.

e A good old house has probability 50% of requiring a repair (that
costs $100,000) and probability 50% of requiring no repair.

e A bad old house has probability 70% of requiring a repair (that
costs $100,000) and probability 30% of requiring no repair.

Based on past data, the probabilities that the inspector will come up with
the various verdicts are:

Both good: 20%
Both bad: 30%

Old house good, new house bad: 20%

Old house bad, new house good: 30%.
THIS IS A LOT OF INFORMATION!
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e NEW costs $350,000. New houses have a 25% probability of
requiring a repair within 5 years and, on average, the repair would
cost $20,000.

e OLD costs $300,000. Old houses have a 60% probability of
requiring a repair within 5 years and, on average, the repair would
cost $100,000.

e You can also hire an inspector and
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The “hire inspector” module is as follows:
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The expected values of the lotteries are:

o For (1):
e For D:
o For (:
e For @:

Thus we can reduce this part of the tree to:



OBJECTIVE: pay the LOWEST S5-year cost
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Thus we can reduce the option of hiring the inspector to the following lottery:
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The optimal decision is:
1. hire the inspector and then

2.(a) if both good, buy
(b) if N good and O bad, buy
(¢) if N bad and O good, buy
(d) if both bad, buy
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Which of the two lotteries is better?
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EXPECTED UTILITY THEORY

Z = {Zlazza---a Zm}‘ set of basic outcomes.
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A lottery is a probability distribution over Z: L= ( 02p. =1 / > p; =1
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Let L be the set of lotteries. Suppose that the agent has a ranking - of the elements of L:
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Theorem 1 Let Z =1{2,,25,..,Z,,} be a set of basic outcomes and L the set of lotteries
over Z. If - satisfies the von Neumann-Morgenstern axionm then there exists a function

U:Z—>R, called a von Neumann-Morgenstern utility function, that assigns a number to

every basic outcome and is such that, for any two lotteries L:[ZZ; ;2 ;'"j and
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2, EXAMPLE 2. .
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