You are bidding against a computer for an item that you value at \$30 The allowed bids are \$10, \$20, \$30, \$40 and \$50. The computer will pick one of these bids randomly. Let *x* be the bid generated by the computer. If your bid is greater than or equal to *x* then you win the object and you **pay** not your bid but the **computer's bid**. If your bid is less than *x* then you get nothing and pay nothing.

Now same as above, but if you win the object and **pay your own bid**.

	computer's bid \rightarrow	\$10	\$20	\$30	\$40	\$50
your bid \downarrow						
	\$10	20				
VALUE:	\$20	10				
\$30	\$30	D				
	\$40	-10				
	\$50	-20				

So we can simplify

What then?

First a different example:

Worst-case scenario state $\rightarrow s_1 \quad s_2 \quad s_3$ Pick the action that give, act \downarrow Hu best of the worst. 4 3 (1) a_1 3 (2) 2 as because 3>1 a_2 5 3 2 a_3 3)2 6 1 (0) $a_{\scriptscriptstyle A}$ 2 > 0 Maxi Min = Sas 3 (3) 3 4 a_5

One criterion that can be used is the MaxiMin criterion.

Now back to the previous problem:

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow Maxi Min = { 92,93,95} (2)(2)6 a_{2} (5)(2) a_3 (5)2 a_5

MaxiMin =

Lexi Min = { 93, 95 }

A refinement is the **LexiMin**

state $\rightarrow s_1 \quad s_2 \quad s_3$ act \downarrow $a_2 \quad 6 \quad 2 \quad 2$

 a_3 5 3 2 a_5 3 2 5

Here the LexiMin picks

One more example:

Max, Min = 263

Special case: outcomes are sums of money state \rightarrow S_2 S_1 S_3 S_4 no dominance act \downarrow \$30 \$0 \$12 \$18 a_1 \$36) \$6 \$24 \$12 a_2 \$42) \$12 \$0 \$6 a_3

Suppose that we are able to assign probabilities to the states:

state
$$\rightarrow s_1 \quad s_2 \quad s_3 \quad s_4$$

 $\frac{1}{3} \quad \frac{1}{6} \quad \frac{5}{12} \quad \frac{1}{12}$ Sum = 1 RISK
 $NEUTRALITY$
 a_1 is the lottery $\begin{pmatrix} \$12 & \$30 & \$0 & \$18 \\ \frac{1}{3} & \frac{1}{6} & \frac{5}{12} & \frac{1}{12} \end{pmatrix} = \frac{1}{3}12 + \frac{1}{6}30 + \frac{5}{12}0 + \frac{1}{12}18 = 10.5$
 a_2 is the lottery $\begin{pmatrix} \$36 & \$6 & \$24 & \$12 \\ \frac{1}{3} & \frac{1}{6} & \frac{5}{12} & \frac{1}{12} \end{pmatrix} = \frac{1}{3}36 + \frac{1}{6}6 + \frac{5}{12}24 + \frac{1}{12}12 = 24$
 a_3 is the lottery $\begin{pmatrix} \$6 & \$42 & \$12 & \frac{1}{12} & \frac{\$0}{12} \\ \frac{1}{6} & \frac{5}{12} & \frac{1}{12} & \frac{\$0}{12} \end{pmatrix} = \frac{1}{3}6 + \frac{1}{6}42 + \frac{5}{12}(2 + \frac{1}{12}0) = 14$
The expected values are:

$$E[a_1] = 10.5$$

$$E[a_2] = 24 \quad A \quad risk-uentral person picks a_2$$

$$E[a_3] = 14$$

Definition of attitude to risk

Given a money lottery L, imagine giving the individual a choice between L and the expected value of L for sure, that is, the choice

between
$$\binom{\mathbb{E}[L]}{1}$$
 and L or, written more simply, between $\mathbb{E}[L]$ and L

If she says that

- $\mathbb{E}[L] \succ L$ we say that she is risk $A \lor e R \lor e$ relative to L• $\mathbb{E}[L] \xrightarrow{\cap L}$ we say that she is risk \mathbb{N}_{EUTRAL} relative to L
- $L \succ \mathbb{E}[L]$ we say that she is risk $L \oslash V \land G$ relative to L

So in the above example, if we assume that the agent is risk neutral relative to every lottery and her preferences are transitive, then, since 1 N

$$\mathbb{E}[a_{1}] = 10.5 \qquad \begin{pmatrix} \$12 & \$30 & \$0 & \$18 \\ \frac{1}{3} & \frac{1}{6} & \frac{5}{12} & \frac{1}{12} \end{pmatrix} = a_{1} \qquad \begin{pmatrix} \$10.5 \\ 1 \end{pmatrix} \text{ versus } a_{1} \\ \mathbb{E}[a_{3}] = 14 \qquad \qquad \$10.5 > a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 > a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 > a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 > a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 > a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 > a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10.5 = a_{1} \\ \mathbb{E}[a_{1}] = 14 \qquad \qquad \$10$$

Can we infer risk attitudes from choices?

Let
$$L = \begin{pmatrix} \$40 & \$60 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 Then $\mathbb{E}[L] = \frac{1}{2} 40 + \frac{1}{2} 60 = 50$
Suppose Ann's preferences are transitive, she prefers more money to less and she says that
she prefers $\$49$ to L.
 $\$50 \times \49
 $\$50 \times \49
 $\$50 \times \49
 $\$50 \times 1$ So A un is risk averse
Suppose Bob's preferences are transitive, he prefers more money to less and he says that he
prefers $\$51$ to L.
Bob could be risk neutral : $\$51 \times \$50 \sim L$ by transitivity
 $\$51 \times L$
Bob could be risk averse : $\$51 \times \$50 \times L$ 1

Bob could be risk loving L>\$50 S < possibility \$51>\$50.50

.

 $if \quad w_{7} > w_{4} \sim w_{5} > w_{6}$

22 > 23 > 24 > 21