- Expected Utility Theory
- The Allais Paradox
- Mormalization of the utility function
- Decision trees revisited
- Hurwicz index
- MinMax Regret

Theorem 2. Let \succeq be a von Neumann-Morgenstern ranking of the set of basic lotteries \mathcal{L} . Then the following are true.

- (A) If $U: Z \to \mathbb{R}$ is a von Neumann-Morgenstern utility function that represents \succeq , then, for any two real numbers *a* and *b* with a > 0, the function $V: Z \to \mathbb{R}$ defined by $V(z_i) = aU(z_i) + b$ (i = 1, 2, ..., m) is also a von Neumann-Morgenstern utility function that represents \succeq .
- (B) If $U: Z \to \mathbb{R}$ and $V: Z \to \mathbb{R}$ are two von Neumann-Morgenstern utility functions that represent \succeq , then there exist two real numbers *a* and *b* with a > 0 such that $V(z_i) = aU(z_i) + b$ (i = 1, 2, ..., m).

$$U = \begin{cases} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 \\ 10 & 6 & 16 & 8 & 6 & 14 \end{cases}$$

What should you do?

The Allais paradox

(Maurice Allais, 1952)

 $A = \begin{pmatrix} \$1M \\ 100\% \end{pmatrix} \quad \text{versus} \quad B = \begin{pmatrix} \$2.5M & \$1M & 0 \\ 10\% & \$9\% & 1\% \end{pmatrix}$

$$C = \begin{pmatrix} \$1M & 0\\ 11\% & 89\% \end{pmatrix} \quad \text{versus} \quad D = \begin{pmatrix} \$2.5M & 0\\ 10\% & 90\% \end{pmatrix}.$$

First question to ask yourself: what is my ranking of the basic outcomes?

state \rightarrow	S_1	S_2	<i>S</i> ₃
act↓			
a_{1}	Z_1	Z_2	Z_3
a_2	Z_4	Z_5	Z_6
a_3	\mathcal{Z}_7	Z_8	Z_9

state \rightarrow act \downarrow	S ₁	<i>s</i> ₂	<i>S</i> ₃	best z_8 z_3
a_1	Z_1	Z_2	Z_3	Z_1, Z_9
a_2	Z_A	- Z5	Z ₆	<i>z</i> ₂ , <i>z</i> ₆
a_2	т Z. ₇	 Z.o	<i>Z</i> .o	z_4, z_5
3	5/	-8	~9	worst z_7

Note:

• a_1

Thus ...

state \rightarrow	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	Utility best z_8 1
act ↓	1	L	5	z_3
a_1	Z_1	Z_2	Z_3	z_1, z_9
a_3	Z_7	Z_8	Z_9	z_2 worst z_7 0

Three questions to ask yourself:

Note that **p** is the probability of the worst outcome, not the best

- (1) What p is such that $\begin{pmatrix} z_3 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$? Suppose the answer is
- (2) What p is such that $\begin{pmatrix} z_1 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$? Suppose the answer is

(3) What p is such that
$$\begin{pmatrix} z_2 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is

		Utility
best	Z_8	1
	Z_3	$\frac{3}{4}$
	Z_1, Z_9	$\frac{2}{3}$
	Z_2	$\frac{2}{5}$
worst	Z_7	0

In order not to deal with fractions, rescale the utility function by multiplying each number by 60:

Utility

best	Z_8	60
	Z_3	45
	z_1, z_9	40
	Z_2	24
worst	\mathcal{Z}_7	0

state \rightarrow s_1 s_2 s_3 act \downarrow a_1 40 24 45 a_3 0 60 40

Next step: try to assign probabilities to the states (from objective data or some subjective assessment). Suppose you assess the following:

state:	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
probability:	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

Then: $\mathbb{E}[U(a_1)] =$

 $\mathbb{E}[U(a_3)] =$

Hence you should take action

First question to ask yourself: how do I rank z_1 and z_2 ? Suppose that the answer is $z_2 \succ z_1$.

Second question to ask yourself: how do I rank z_4 and z_5 ? Suppose that the answer is $z_4 \succ z_5$.

Next question: how do I rank the remaining four outcomes? Suppose:

		Utility
best	Z_2	1
	Z_6	
	Z_4	
worst	Z_3	0

This is sufficient to eliminate the random event on the left:

Two more questions and then you are done!

(4) What p is such that
$$\begin{pmatrix} z_6 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_2 & z_3 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is $p = \frac{1}{2}$.

(5) What p is such that
$$\begin{pmatrix} z_4 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_2 & z_3 \\ p & 1-p \end{pmatrix}$$
? Suppose the answer is $p = \frac{1}{10}$.

Then the lottery corresponding to the random event on the right has an expected utility of

Hence the optimal decision is to first take action a and then, if a second choice is required between c and d, choose d:

THE HURWICZ INDEX

	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃
$\overline{a_1}$	8	1	0
a_2	6	2	3
a_3	0	3	4

$$H_{\alpha}(a_1) = 0\alpha + 8(1-\alpha) = 8 - 8\alpha$$

$$H_{\alpha}(a_2) = 2\alpha + 6(1-\alpha) = 6 - 4\alpha$$

$$H_{\alpha}(a_3) = 0\alpha + 4(1-\alpha) = 4 - 4\alpha$$

Note: the Hurwicz index is invariant to allowed transformations of the utility function.

MinMax REGRET

	S_1	S_2	<i>S</i> ₃
$\overline{a_1}$	8	1	0
a_2	6	2	3
a_3	i 0	3	4

Define the **regret of taking action** *a* **under state** *s* as the difference between the maximum utility you could have got under state *s* (by taking the best action for that state) and the utility that you get with action *a*. We can then construct a **regret table:**

If I had chosen an alternative utility function, would I have reached the same conclusion in terms of MinMaxRegret? Consider a new decision problem:

The expected utility of surgery is

the expected utility of taking the drug is

So if you know the values of p and q then your optimal decision is:

- surgery if
- drug if
- either surgery or drug is

Suppose that the values of p and q are not available

	(S,D)	$(S, \neg D)$	$(\neg S, D)$	$(\neg S, \neg D)$
Surgery	z_1	z_1	z_2	z_2
Drug	$ z_1$	Z_3	Z_1	Z_3

The corresponding regret table is:

$$\frac{|(S,D) (S,\neg D) (\neg S,D) (\neg S,\neg D)}{Surgery} | \\
Drug |$$

What about the Hurwicz index?

$$H_{\alpha}(Drug) = H_{\alpha}(Surgery) =$$