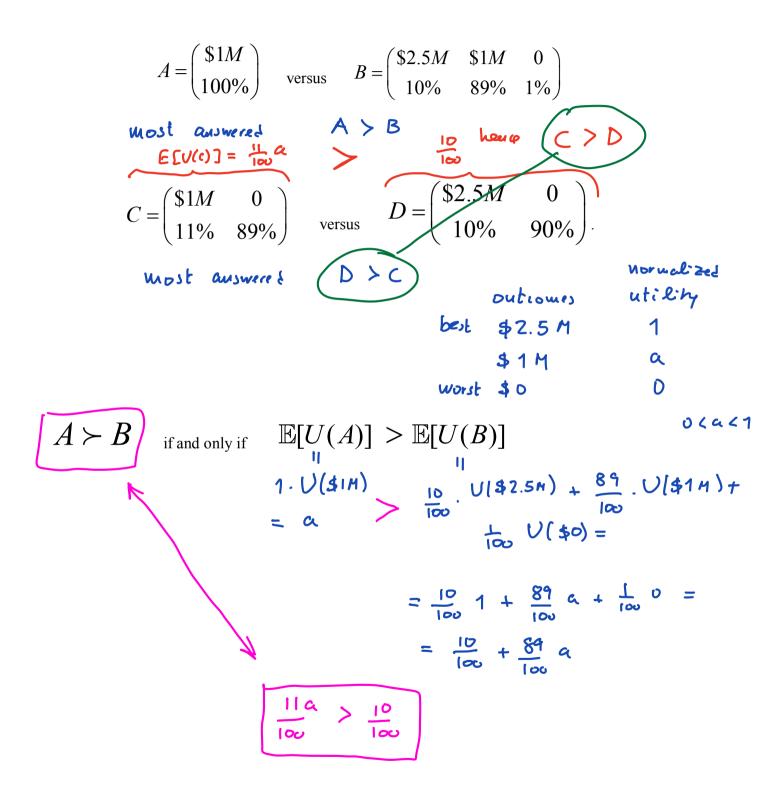


- The Allais Paradox
- \star Normalization of the utility function \checkmark

- Decision trees revisited
- Hurwicz index
- MinMax Regret

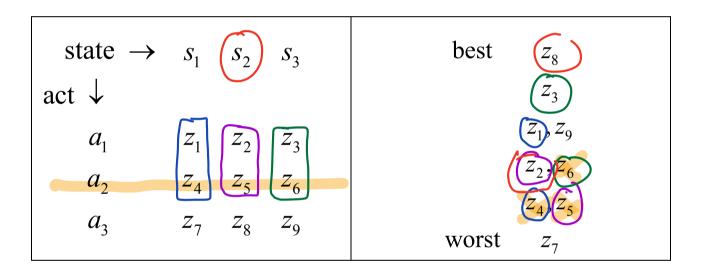
The Allais paradox

(Maurice Allais, 1952)



First question to ask yourself: what is my ranking of the basic outcomes?

state \rightarrow s_1 s_2 s_3 act \downarrow a_1 z_1 z_2 z_3 a_2 z_4 z_5 z_6 a_3 z_7 z_8 z_9



Note:

• a_1 strictly dominates a_2 : $Z_1 > Z_4$, $Z_2 > Z_5$, $Z_3 > Z_6$ is then a_1 a dominant act? No because Thus ... a_1 does not dominate a_3 : with a_3 get Z_8 with a_1 get Z_2 $Z_8 > Z_2$

state \rightarrow act \downarrow a_1 a_3	S_1 Z_1 Z_7	_	2	best		Utilit		
worst z_7 0Three questions to ask yourself:Note that p is the probability of the worst outcome, not the best								
(1) What p is such that $\begin{pmatrix} z_3 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$? Suppose the answer is $p = \frac{1}{4}$, $l - p = \frac{3}{4}$								
(2) What p is such that $\begin{pmatrix} z_1 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$? Suppose the answer is $\mathbf{f} = \frac{1}{3}$, $\mathbf{l} \sim \mathbf{f} = \frac{2}{3}$								
(3) What p is such that $\begin{pmatrix} z_2 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_7 & z_8 \\ p & 1-p \end{pmatrix}$? Suppose the answer is $p = \frac{2}{5}$, $[-p] = \frac{2}{5}$								
$\begin{pmatrix} a = 60 \\ b = 0 \end{pmatrix}$		bes	Z_{1}	$\begin{array}{c c} & 1 \\ \hline & 3 \\ \hline & & \frac{3}{4} \\ \hline & Z_9 \\ \hline & & \frac{2}{3} \end{array}$		4 0 2 4	,	
		WOI	rst z			0		
In order not to deal with fractions, rescale the utility function by multiplying each number by 60:								

$$E[V(a_1)] = \frac{31.4}{60}$$
$$E[V(a_3)] = \frac{44}{60}$$

$$utility$$

$$u_{1} = \begin{pmatrix} 2_{1} & 2_{2} & z_{3} \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{1} = \begin{pmatrix} 40 & 24 & 45 \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{2} & 24$$

$$u_{3} = \begin{pmatrix} 40 & 24 & 45 \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 40 & 24 & 45 \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 40 & 24 & 45 \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

$$u_{3} = \begin{pmatrix} 1$$

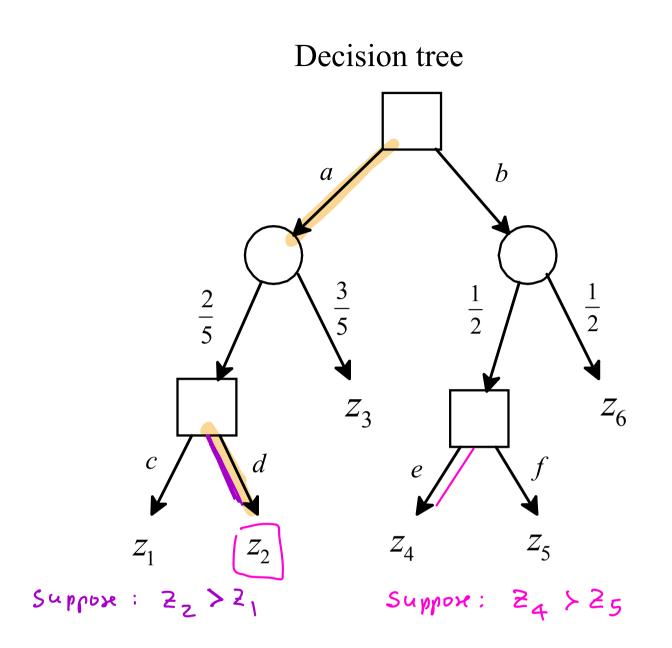
Next step: try to assign probabilities to the states (from objective data or some subjective assessment). Suppose you assess the following:

state:	S_1	S_2	<i>S</i> ₃
probability:	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

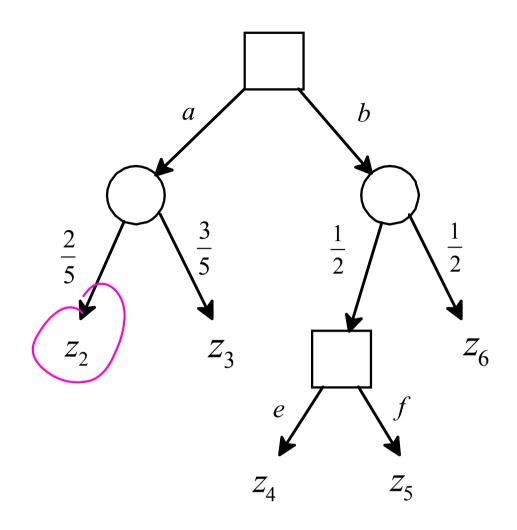
Then: $\mathbb{E}[U(a_1)] =$

 $\mathbb{E}[U(a_3)] =$

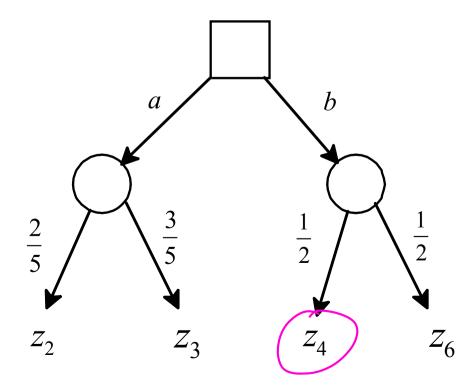
Hence you should take action Q_3

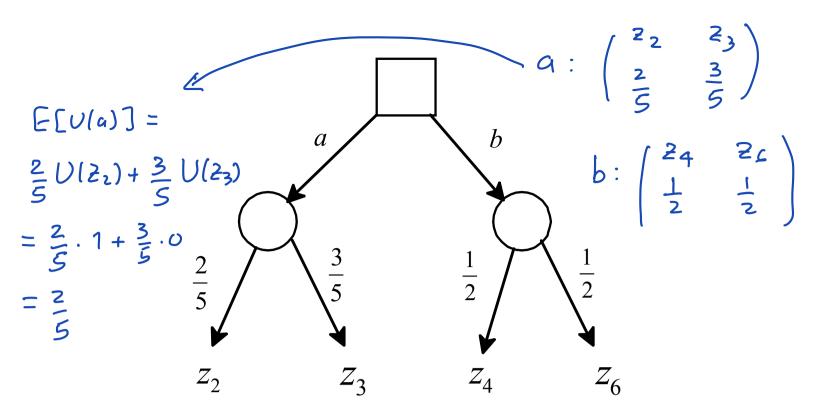


First question to ask yourself: how do I rank z_1 and z_2 ? Suppose that the answer is $z_2 \succ z_1$.



Second question to ask yourself: how do I rank z_4 and z_5 ? Suppose that the answer is $z_4 \succ z_5$.

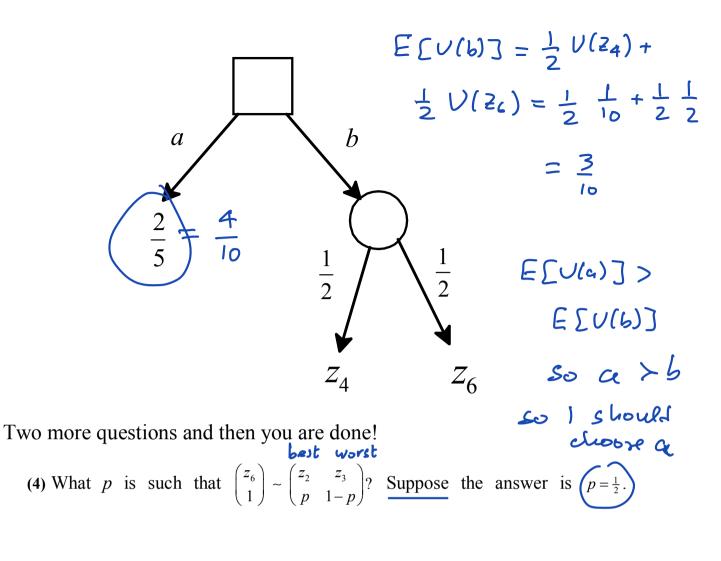




Next question: how do I rank the remaining four outcomes? Suppose:

		Utility
best	Z_2	1
	Z_6	-12
	Z_4	+0
worst	Z_3	0

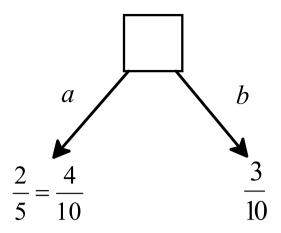
This is sufficient to eliminate the random event on the left:



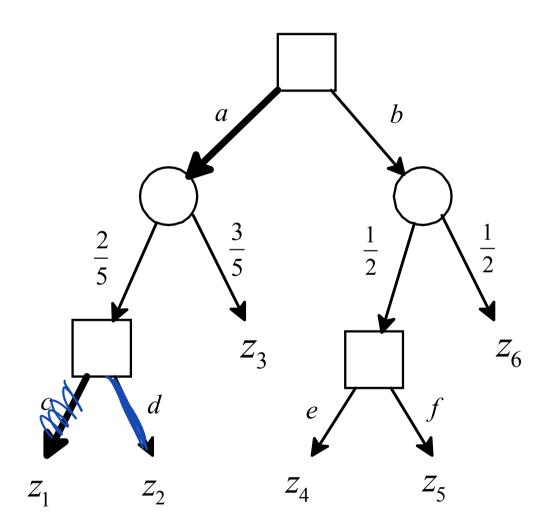
(5) What
$$p$$
 is such that $\begin{pmatrix} z_4 \\ 1 \end{pmatrix} \sim \begin{pmatrix} z_2 & z_3 \\ p & 1-p \end{pmatrix}$? Suppose the answer is $p = \frac{1}{10}$.

Then the lottery corresponding to the random event on the right has an expected utility of

Decision: First a, Men if I have to choose again between c and d choose d

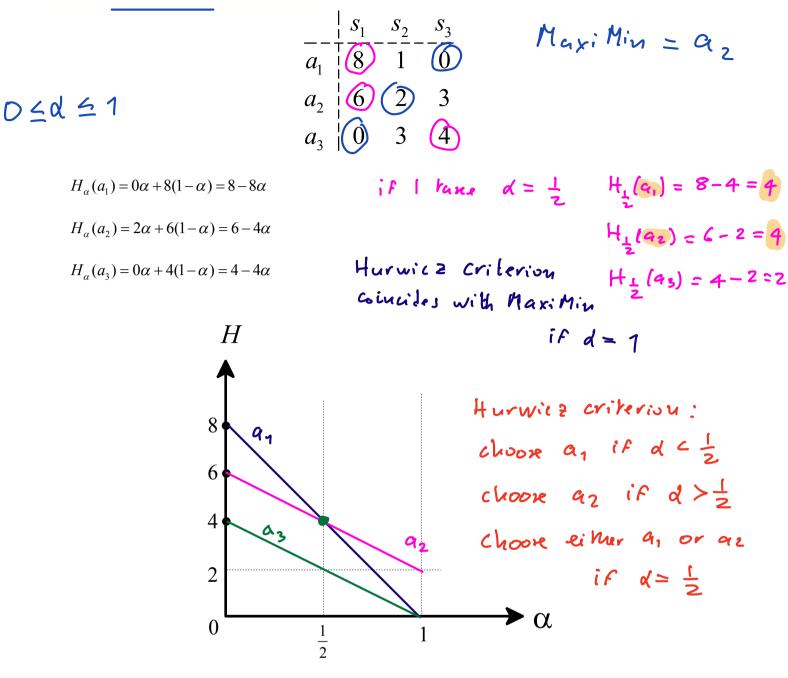


Hence the optimal decision is to first take action a and then, if a second choice is required between c and d, choose d:



THE HURWICZ INDEX

utilities



Note: the Hurwicz index is invariant to allowed transformations of the utility function.