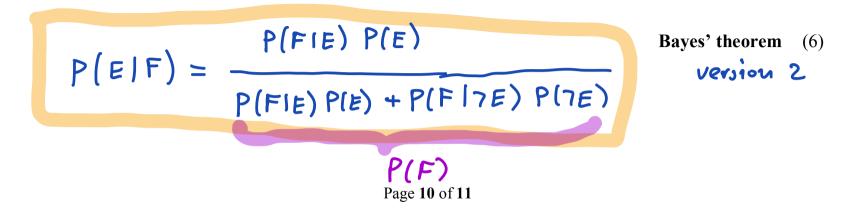
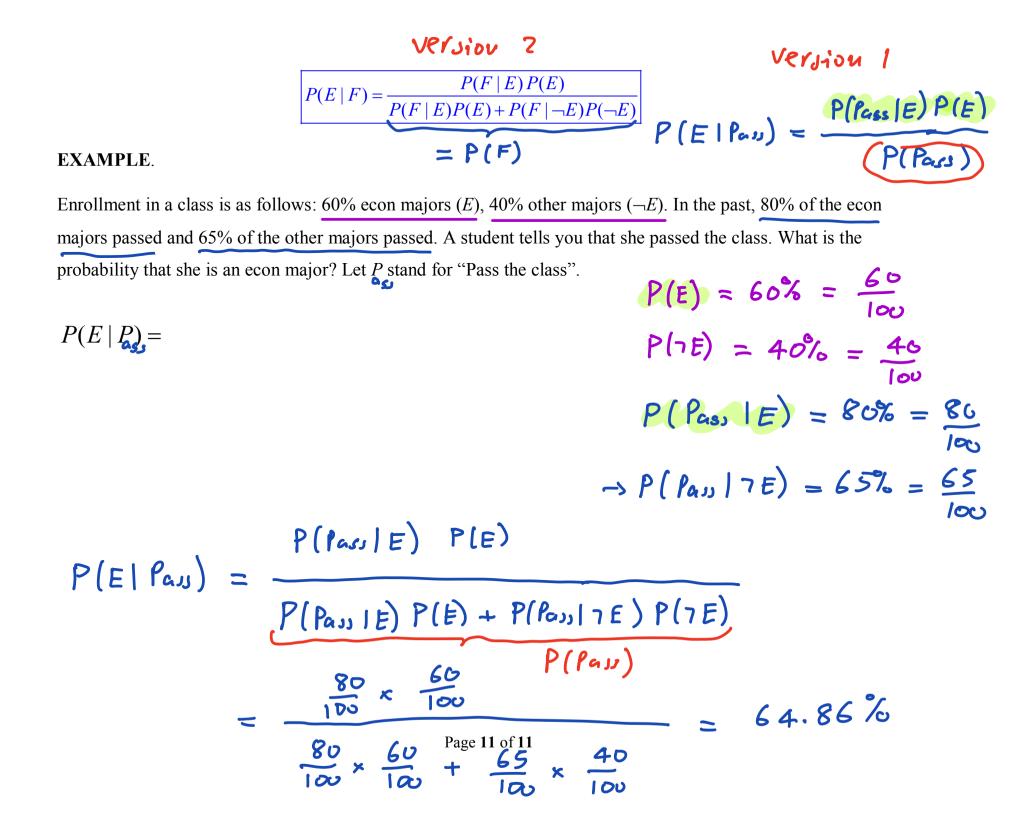


Replacing this in Bayes' formula we get





Back to previous examples

EXAMPLE 1. Testing for a disease

Base rate of a disease: percentage of the population that has the disease

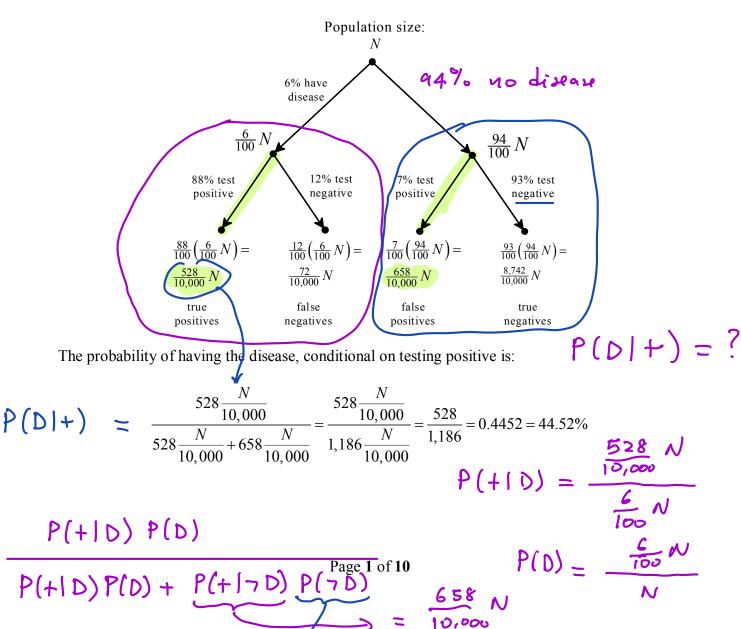
Sensitivity of a test: percentage of those who have the disease that tests positive

Specificity of a test: percentage of those who **do not** have the disease that tests negative Suppose:

Base rate = 6%		
Sensitivity = 88%	true	positive s
Specificity = 93%	true	neghtives

Suppose you test positive. What is the probability that you have the disease?

Previous analysis:



D = have the disease $\neg D$ = do not have disease

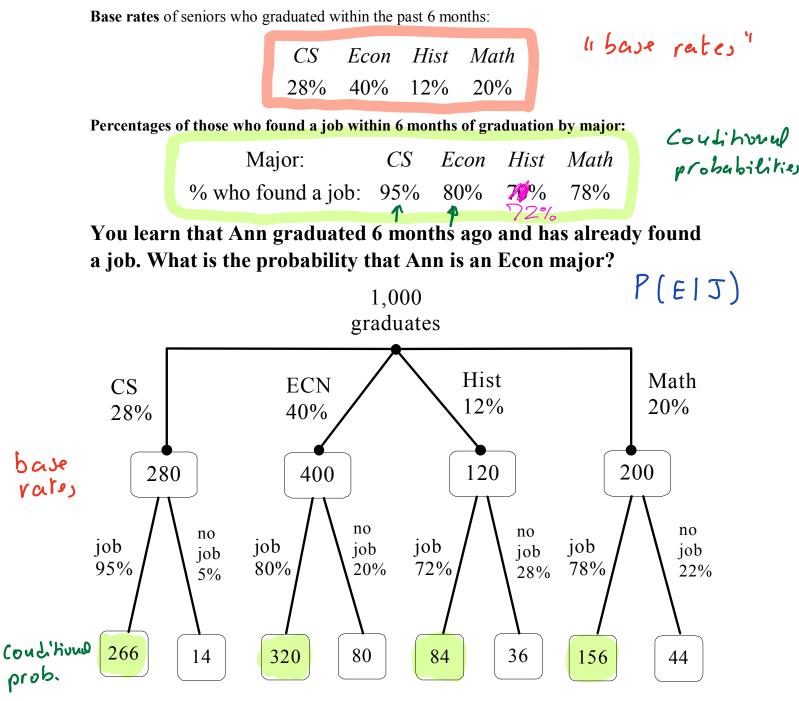
+ = test positive - = 1	test negative	
Base rate = 6%	P(D) = 6%	P(7D) = 94%
Sensitivity = 88%	P(+ D) = 88%	P(-1D)=12%
Specificity = 93%	P(+ 70) = 7%	P(-17D) = 93%

By Bayes' rule:

$$P(D|+) = \frac{P(+|D) P(D)}{P(+|D) P(D) + P(+|D) P(-D)}$$

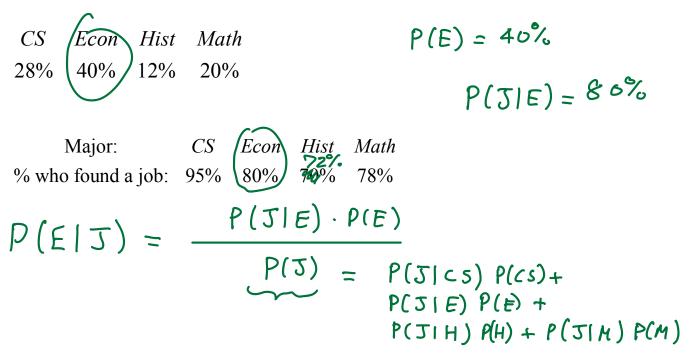
$$= \frac{\frac{88}{100} \times \frac{6}{100}}{\frac{88}{100} \times \frac{6}{100}} = 44.52\%$$

EXAMPLE 2. More than two categories



The probability of Ann being and Econ major, given that she found a job is thus:

 $P(E|J) = \frac{320}{266+320+84+156} = \frac{320}{826} = 0.3874 = 38.74\%$ found a job



Now we need a version of Bayes' rule that allows for more than two conditioning events.

Let S be the set of states and $\{E_1, E_2, ..., E_m\}$ be a partition of S, that is,

- $E_1 \cup E_2 \cup \ldots \cup E_m = S$
- For all $i, j \in \{1, 2, ..., m\}$ with $i \neq j, E_i \cap E_j = \emptyset$ $A = (A \land B) \cup (A \land \neg B)$

Let $F \subseteq S$ be an arbitrary event. Then

$$A = (A \cap E_1) \cup (A \cap E_2) \cup \cdots \cup (A \cap E_m)$$

 $F = (F \cap E_1) \cup (F \cap E_2) \cup \dots \cup (F \cap E_m)$, all disjoint events. Thus

$$P(F) = P(F \cap E_1) + P(F \cap E_2) + \dots + P(F \cap E_m)$$

generalizes
$$P(F) = P(F \cap E) + P(F \cap 7E)$$

Hence,
$$P(E_i | F) = = \frac{80 \times 40}{100} \times \frac{40}{100} = \frac{80 \times 40}{100} \times \frac{40}{100} = \frac{95}{100} \times \frac{28}{198} + \frac{80}{100} \times \frac{40}{100} + \frac{72}{100} \times \frac{12}{100} + \frac{78}{100} \times \frac{20}{100}$$

$$S = \{a, b, c, d, e, f, g\}$$

 $\Rightarrow information E = \{a, c, e, g\}$
 $interested in prob. of A = \{a, e, F\}$

P(AIE)