
  



 5% of the population are infected 

 80% of those infected have the symptoms 

 10% of those not infected have the symptoms 
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A test is now available. The probability of testing positive is 
independent of whether or not you have symptoms: 

 If you are infected, the probability of testing positive is 80% 
(whether or not you have the symptoms) 

 If you are not infected, the probability of testing positive is 
10% (whether or not you have the symptoms) 

 

Since you woke up with symptoms, you decided to get tested 
and the result was positive. How likely is it that you are 
infected? 
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 If you are infected, the probability of testing positive is 80% (whether or not you have 
the symptoms) 

 If you are not infected, the probability of testing positive is 10% (whether or not you 
have the symptoms) 
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Conditional reasoning: the frequency approach 
 

EXAMPLE 1. Testing for a disease 
 

Base rate of a disease: percentage of the population that has the 
disease 

Sensitivity of a test: percentage of those who have the disease 
that tests positive 

Specificity of a test: percentage of those who do not have the 
disease that tests negative 

Suppose: 

Base rate = 6% 

Sensitivity = 88% 

Specificity = 93% 

 

Suppose you test positive. What is the probability that you have 
the disease? 

 

tone positive

true negative



do nothave
6 94 disease

F 98T
88 12 7 93

tn EN n 4o.n
tune positive false positive

P D

prob of having EN
disease given
that you test 8 yet

ñ
44.529

positive



MORE THAN TWO CATEGORIES 
Enrollment in a class 

38% 20% 12% 30%
ECN ARE PSY Other

 

Percentages of those who passed: 

major
percentage who passed 70% 60% 40% 35%

ECN ARE PSY Other
 

You learn that Ann passed the class. How likely is it that Ann is a PSY major? 

 
  



major
enrollment 38% 20% 12% 30%

percentage who passed 70% 60% 40% 35%

ECN ARE PSY Other

 

Ann passed the class. How 
likely is it that she is a PSY 
major? 
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Probability and conditional probability 
Finite set of states  1 2{ , ,..., }nS s s s .  Subsets of S are called events. 

Probability distribution over S: 

1 2

1 2

...

...
n

n

s s s
p p p   

Denote the probability of state s by ( )p s .  

Given an event E S , the probability of E is: 

               if  
( )

              if  
P E


 



 

 

Denote by E  the complement of E S . 
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Example 

{ , , , , , , }S a b c d e f g      { , , , }A a c d e         { , , }B a e g  

{ , , }, { , , , }b f g bA fB c d      

Given 

6 31 2 1 1
14 14 14 14 14 140
a b c d e f g

 

 

6 81 1
14 14 14 140( )P A                    6 3 101

14 14 14 14( )P B       

{ , }eA B a              6 71
14 14 14( )P A B       

{ , , , , }a cA d e gB                    6 31 1 11
14 14 14 14 14( 0)P A B       .     

Note: for every two events E and F: 

( ) ( ( )) )( P E FP PF FE P E      

bitg b c d f

4 0 4
a e

a c d e g 0 14

PIE P F P EAF
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We denote by ( | )P E F  the probability of E conditional on F and define it as: 

( )( | )
( )

P E FP E F
P F



  

Continuing the example above where   6 31 2 1 1
14 14 14 14 14 140
a b c d e f g

      { , , , }A a c d e          { , , }B a e g  

6 81 1
14 14 14 14( ) 0P A      ,   6 3 101

14 14 14 14( )P B     ,  6 71
14 14 14( )P A B     

7
14
10
14

( | 7
0

)
1

P A B      

7
14
8

14

( 7
8

| )P B A  . 

The conditional probability formula can also be applied to individual states: 

  if 
( |

)
(

)

 if(
)

p s
P

p s

E

E



 



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We can think of ( | )p E  as a probability distribution on the entire set S. Continuing the example above 

where { , , , , , , }S a b c d e f g ,   { , , , }A a c d e  and    6 31 2 1 1
14 14 14 14 14 140
a b c d e f g

     (so that 8
14( )P A  )  

61 1
14 14 14 61 1

8 8 88 8 8 8
14 14 14 14

0 0( | ) :

a b c d e f g

p A      

Shortcut to obtain the revised or updated probabilities: 

Initial or prior probabilities. Note that here they all have the same denominator. 

15 70 5 10
100 100 100 100

a b c d 
 
  
 

 

Information or conditioning event: { , , }F a b d   

STEP 1. Set the probability of every state which is not in F to zero: 

15 70 10
100 100 1 0

0
0

a b c d 
 
  
 

 

STEP 2. For the other states write new fractions with the same numerators as before: 

15 70 100
... ... ...

a b c d 
 
  
 

 

STEP 3. In every denominator put the sum of the numerators: 15+70+10=95. Thus the 

updated probabilities are: 15 70 100
95 95 95

a b c d 
 
  
 
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In the above example, where  
6 31 2 1 1

14 14 14 14 14 140
a b c d e f g

   and { , , , }A a c d e , to compute ( | )p A  

Step 1: assign zero probability to states in A : 

a b c d e f g
 

Step 2: keep the same numerators for the states in A: 

0 0 0
a b c d e f g

 

Step 3: since the sum of the numerators is 8, put 8 as the denominator: 

61 1
8 8 80 0 0 0
a b c d e f g
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EXAMPLE 2.  Sample space or set of states: { , , , , , }.a b c d e f  

Initial or prior probabilities:    

3 3 1 2 10
20 10 20 5 10

a b c d e f 
 
  
 

 

Information: { , , , }F a b d e  

STEP 0. Rewrite all the probabilities with the same denominator:  

3 6 80
20 20 20

0 0

a b c d e f 
 
  
 

 

STEP 1. Change the probability of every state which is not in F to zero: 

3 6 80
20 20 20

0 0

a b c d e f 
 
  
 

 

STEP 2. Write new fractions which have the same numerators as before: 

3 6 80
20 20 20

0 0

a b c d e f 
 
  
 

 

STEP 3. In every denominator put the sum of the numerators: 

3+6+8=17.  3 6 80 0 0
17 17 17

a b c d e f 
 
  
 
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INDEPENDENT EVENTS. 

We say that two events A and B are independent if   

( ) ( ) ( )P A B P A P B               (*) 

It follows from this and the definition of conditional probability that if A and B are independent then 

( | ) ( )  and  ( | ) ( )P A B P A P B A P B      (**) 

Alternatively, one can take one of the two equalities in (**) as definition of independence and derive 

both the other and (*). Thus (*) and (**) are equivalent. 

 

  

Wmdependence PIA PIB
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Going back to our example where { , , , , , , }S a b c d e f g , { , , , }A a c d e , { , , }B a e g , { , }A B a e    and 

 6 31 2 1 1
14 14 14 14 14 140
a b c d e f g

 

6 81 1
14 14 14 140( )P A     ,    6 3 101

14 14 14 14( )P B    ,  6 71 1
14 14 14 2( )P A B              8 10 40

14 14 49( ) ( )P A P B   

On the other hand, if { , , , , , , , , }S a b c d e f g h i  and  

1 1 1 2 2 1 1
9 9 9 9 9 9 90 0
a b c d e f g h i

 

Then { , , , } and { , , , }E a b c e F c d e g   are independent. In fact, 1 1 1 1
9 9 9 30( )P E      , 1 2 1

9 9 30) 0(P F     , 
1 1
9 9{ , }, ( 0)E F c e P E F      and thus ( ) ( ) ( )P E F P E P F  .  
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