★ The discounted utility model

★ The hyperbolic utility model

★ Dealing with time inconsistency

The discounted utility model

 $Z = \{z_1, z_2, ..., z_m\}$ set of basic outcomes $T = \{0, 1, 2, ..., n\}$ a set of dates t = 0 is now, t = 1 is one period from now ...

(z,t): outcome z experienced at date t

Preferences over the set of dated outcomes: indexed by the date at which the preferences are being considered:

 $(z,1) \succ_0 (z',2)$ means:

RESTRICTION: $(z,t) \succeq_s (z',t')$ implies that

 U_s utility function that represents the preferences at date s:

When the preferences at time s are restricted to outcomes to be experienced at time s then simpler notation $u_s(z)$:

 $u_s(z) =$

Call $u_s(z)$ the instantaneous utility of z at time s.

Begin with preferences at time 0 (the present): \gtrsim_0 represented by $U_0(\bullet)$. The **discounted or exponential utility model** assumes that these preferences have the following form:

(*)

 $(z,t) \succeq_0 (z',s)$ if and only if

Example 1. z = take online yoga class, z' = take in-person yoga class

$$(z,1) \sim_0 (z',3)$$

If her preferences satisfy the discounted utility model then

Suppose that $u_1(z) = 4$ and $u_3(z') = 6$.

- 1. Then what is her discount factor?
- 2. What is her discount rate?

$$U_0(z,t) = \delta^t u_t(z)$$

Suppose you have a choice between (z',0), (z,0) and (z,1)z' = do nothing and <math>z = carry out a particular activity $U_0(z',0) =$

 $U_0(z,0) =$

 $U_0(z,1) =$

Suppose that $u_0(z') = 0$ and $u_1(z) = u_0(z)$ so that $U_0(z,1) =$

Ranking sequence of outcomes

		Today	Tomorrow
	date	0	1
EXAMPLE 2.	Plan A	x	У
	Plan B	У	x

Suppose: $u_0(x) = u_1(x) = 4$ $u_0(y) = u_1(y) = 6$ $\delta = 0.8$.

	Today	Tomorrow
date	0	1
Plan A		
Plan B		

Extension of the discounted utility:

 $U_0(\text{Plan A}) =$

 $U_0(\text{Plan B}) =$

EXAMPLE 3.
$$\frac{date \quad 0 \quad 1 \quad 2}{\frac{Plan A \quad x \quad y \quad z}{Plan B \quad y \quad z \quad x}}$$

 $U_0(\text{Plan A}) =$

 $U_{0}(\text{Plan B}) =$ Suppose $\begin{cases} \delta = 0.9, \\ u_{0}(x) = 0, u_{1}(y) = 4, u_{2}(z) = 2, \\ u_{0}(y) = 3, u_{1}(z) = 1, u_{2}(x) = 1 \end{cases}$ then

 $U_0(\text{Plan A}) =$

 $U_0(\text{Plan B}) =$

Time consistency of preferences

date	0	1	2	3
Plan A	_	x	У	\overline{Z}
Plan B	_	y	Z	x

Suppose that you "choose" Plan *B*:

Now when date 1 comes along you re-examine those two plans and are free to change your mind (there was no commitment). Your preferences are **time consistent** if at date 1 you maintain the same ranking that you had at time 0:

Recall

$$U_0(z,t) =$$

Extend this to the preferences at any time *s*:

$$U_s(z,t) =$$
 assuming that

$$U_s(z,t) =$$
 assuming that $t \ge s$

	Date 0	Date 1	Date 2	Date 3	Date 4
Plan A			X	У	Х
Plan B			У	Z	Х

 $U_0(\text{Plan A}) =$

 $U_1(\text{Plan A}) =$

 $U_2(\text{Plan A}) =$

And similarly for the utility of Plan B.

Now suppose that at time 0 you prefer Plan A to Plan B:

(**)

Divide both sides of (**) by δ :

Divide both sides of (**) by δ^2 :

The hyperbolic utility model (the β - δ model)

Suppose that on January 1, 2024 you were offered either

- \$1,000 to be collected on January 1, 2025 (12 months later), or
- \$1,500 to be collected on May 1, 2025 (16 months later).

What would you choose?

Suppose that you are asked again on January 1, 2025: what do you choose:

- \$1,000 to be collected now or
- \$1,500 to be collected 4 months from now (on May 1, 2025)

Recall that in the discounted (or exponential) utility model

$$U_{0}(z,t) = \delta^{t} u_{t}(z) = \begin{cases} & \text{if } t = 0 \\ & \text{if } t > 0 \end{cases}$$
(*)

where $0 < \delta \le 1$ is the *discount factor*.

In the hyperbolic utility model

$$U_{0}(z,t) = \delta^{t} u_{t}(z) = \begin{cases} & \text{if } t = 0 \\ & \text{if } t > 0 \end{cases}$$
(**)

discounted utility model:
$$U_s(z,t) = \begin{cases} & \text{if } t = s \\ & \text{if } t > s \end{cases}$$

hyperbolic utility model:
$$U_s(z,t) = \begin{cases} & \text{if } t = s \\ & \text{if } t > s \end{cases}$$

EXAMPLE 1.

	Date 0	Date 1	Date 2	Date 3
Plan A			X	У
Plan B			${\mathcal W}$	Z.

Suppose $u_2(x) = 6$, $u_3(y) = 0$, $u_2(w) = 1.5$, $u_3(z) = 9$ $\beta = 0.6$ and $\delta = 0.8$ Then

 $U_0(\text{Plan A}) =$

 $U_0(\text{Plan B}) =$

Now consider preferences at date 2:

 $U_2(\text{Plan A}) =$

 $U_2(\text{Plan B}) =$

EXAMPLE 2. Choice is between

- \$100 in 12 months or
- \$160 in 16 months

 $u_t(\$x) = \sqrt{x}$, for all t and $\delta = 0.95$

(A) Exponential discounter:

$U_0(\$100,12) =$	
$U_0(\$160, 16) =$	so that

$U_{12}(\$100,12) =$	
$U_{12}(\$160, 16) =$	so that

(B) Hyperbolic discounter with $\beta = 0.8$

_
so that

$U_{12}(\$100,12) =$	
$U_{12}(\$160, 16) =$	so that

Interpretation of the parameter β

The parameter β is a measure of the DM's **bias towards the present**: if $\beta = 1$ then there is no present bias, while if $\beta < 1$ there is present bias. **The lower** β , the greater the intensity of the present bias.

Focus on date 0 and consider an outcome *z* such that $u_t(z) = u(z) > 0$ for all $t \ge 0$.

For an exponential discounter:

From the perspective of date 0, what is the cost of delaying z from date t > 0 to date t +1? Measure this cost as the difference between utility of (z,t) and utility of (z,t+1) as a percentage of utility of (z,t):

$$\frac{U_0(z,t) - U_0(z,t+1)}{U_0(z,t)} =$$

• Do the same for the cost of delaying *z* from date 0 to date 1:

$$\frac{U_0(z,0) - U_0(z,1)}{U_0(z,0)} =$$

For a hyperbolic discounter:

• From the perspective of date 0, what is the cost of delaying *z* from date *t* > 0 to date *t* +1?

$$\frac{U_0(z,t) - U_0(z,t+1)}{U_0(z,t)} =$$

• Cost of delaying *z* from date 0 to date 1:

$$\frac{U_0(z,0) - U_0(z,1)}{U_0(z,0)} =$$

Thus the cost of delaying from today to tomorrow is larger than the cost of delaying from a future date t to the successive date t + 1: there is a larger drop in utility in the former case than in the latter.

EXAMPLE 2. Choice is between

- \$100 in 12 months or
- \$160 in 16 months

 $u_t(\$x) = \sqrt{x}$, for all t and $\delta = 0.95$

(A) Exponential discounter:

$U_0(\$100,12) =$	
$U_0(\$160, 16) =$	so that

$U_{12}(\$100,12) =$	
$U_{12}(\$160, 16) =$	so that

(B) Hyperbolic discounter with $\beta = 0.8$

$U_0(\$100,12) =$	_
$U_0(\$160, 16) =$	so that

$U_{12}(\$100,12) =$	
$U_{12}(\$160, 16) =$	so that

Dealing with time inconsistency

EXAMPLE 1. You have a final tomorrow. You are going to the library to study.

Utility:

best

Your ranking at Date 0 is:

worst

IF you can commit:

HOW CAN YOU COMMIT?

Once started, **it cannot be undone by the application**, by deleting the application, or by restarting the computer – you must wait for the timer to run out.

Concentrate

When I activate "Writing," the app automatically closes my email client and Internet Browser; blocks me from Twitter, Facebook, and YouTube; launches Microsoft Word; and sets my instant messaging status to "away". *For Macs only*.

FocusWriter

FocusWriter re-creates a word processor-like environment, blocking out absolutely everything on your screen except for the words you type on a simple grey background – all menus (date, timer, dock, etc) are tucked away until rollover. *For Macs and PCs*.

Anti-Social

Rather than blocking the Internet in its entirety, Anti-Social automatically blocks all of the known time-sinks for a set period of time. Sites that are off-limits include Twitter, Facebook, Flickr, Digg, Reddit, YouTube, Hulu, Vimeo, and all standard web email programs. *For Macs and PCs*.

StayFocusd

This extension, for users of Google's Chrome browser, works in the reverse manner to Anti-Social or Self-Control. Rather than setting a period of time for which you CANNOT use the Internet, it allows you to set a period of time to indulge in time-wasting sites. Only want to give yourself 60 minutes a day for Twitter, vanity Googling, and updating your Netflix queue? This is your app. Rather like when you were a kid and only allowed to watch 2 hours of TV a day. For Firefox users, <u>LeechBlock</u> performs a similar function. *For Macs and PCs*.

What is commitment? Elimination of options:

EXAMPLE 2.

You have promised to help a friend paint her house (activity *x*) either this weekend (Date 1) or the next (Date 2) or the following one (Date 3). The instantaneous utility of *x* is the same at every date: $u_t(x) = 1$, for every t = 1,2,3. You are also a member of the snowboarding club which has trips planned for all three weekends. Call *y* the activity of joining the trip and suppose that

$$u_1(y) = 6$$
 $u_2(y) = 8$ $u_3(y) = 12$

So you have three possible plans:

	First	Second	Third
	weekend	weekend	weekend
Choice	(Date 1)	(Date 2)	(Date 3)
А	x	У	У
В	У	x	У
С	У	У	X

Replacing outcomes with instantaneous utilities:

	First	Second	Third
	weekend	weekend	weekend
Choice	(Date 1)	(Date 2)	(Date 3)
А	1	8	12
В	6	1	12
С	6	8	1

Suppose that your preferences are represented by the hyperbolic utility model with discount factor $\delta = 0.85$ and present-bias parameter $\beta = 0.7$.

 $U_1(A) =$

 $U_1(B) =$

 $U_1(C) =$

So your ranking at Date 1 is:

However, if you know your own preferences you know that

 $U_{2}(B) =$

 $U_2(C) =$

So that you understand that your ranking at Date 2 will be:

