Professor Giacomo Bonanno

HOMEWORK 2: ANSWERS

(a) The Cournot-Nash equilibrium is $q_1 = q_2 = \frac{a-c}{3b}$.

(b) The profit function of Firm 1 is

$$\Pi_{1} = \alpha_{1} \Big[q_{1} \Big(a - b(q_{1} + q_{2}) \Big) - cq_{1} \Big] + (1 - \alpha_{2}) \Big[q_{2} \Big(a - b(q_{1} + q_{2}) \Big) - cq_{2} \Big]. \text{ Solving } \frac{\partial \Pi_{1}}{\partial q_{1}} = 0 \text{ with}$$

respect to q_1 gives Firm 1's best reply function as $BR_1 = \frac{a-c}{2b} - \frac{1+\alpha_1 - \alpha_2}{2\alpha_1}q_2$.

$$\frac{\partial BR_1}{\partial \alpha_1} = q_2 \frac{1-\alpha_2}{2\alpha_1^2} \text{ which is well defined (recall that, by assumption, } \alpha_1 > 0) \text{ and positive}$$

as long as $\alpha_2 < 1$. Thus BR_1 is increasing in α_1 if $\alpha_2 < 1$ and independent of α_1 if $\alpha_2 = 1$
$$\frac{\partial BR_1}{\partial \alpha_2} = q_2 \frac{1}{2\alpha_1} \text{ which is well defined (since } \alpha_1 > 0) \text{ and positive. Thus } BR_1 \text{ is increasing}$$

also in α_2 .

(c) Solving the first-order conditions we get that the Nash equilibrium is given by

$$q_1 = \frac{(a-c)\alpha_2}{b(1+\alpha_1+\alpha_2)}, \quad q_2 = \frac{(a-c)\alpha_1}{b(1+\alpha_1+\alpha_2)}$$

(d) When $\alpha_1 = \alpha_2 = \alpha$ the above expressions become $q_1 = q_2 = \frac{(a-c)\alpha}{b(1+2\alpha)}$. The derivative of this

expression with respect to α is $\frac{(a-c)\alpha}{b(1+2\alpha)^2}$ which is positive. Thus both q_1 and q_2 are

increasing in α .

(e) Monopoly output is equal to
$$\frac{a-c}{2b}$$
. Now $2\frac{(a-c)\alpha}{b(1+2\alpha)}$ is equal to this if and only if $\alpha = \frac{1}{2}$.