HOMEWORK 3 : ANSWERS

(a) In the figure below, P stands for Profit-sharing contract and R for Revenue-sharing contract. Mi stands for Manager of firm i.

(b) Number the subgames games 1 to 4 from left to right.

Subgame 1: q_1 is chosen to maximize $\alpha \Pi_1(q_1,q_2) = \alpha \left(q_1(60-q_1-q_2)-12q_1\right)$ and q_2 is chosen to maximize $\alpha \Pi_2(q_1,q_2) = \alpha \left(q_2(60-q_1-q_2)-12q_2\right)$. Solving $\frac{\partial \Pi_1}{\partial q_1} = 0$ and $\frac{\partial \Pi_2}{\partial q_2} = 0$ gives $q_1 = q_2 = 16$. Player 1’s payoff is $(1-\alpha)\Pi_2(16,16) = (1-\alpha)256$ and the same is true for player 2.

Subgame 2: q_1 is chosen to maximize $\alpha \Pi_1(q_1,q_2) = \alpha \left(q_1(60-q_1-q_2)-12q_1\right)$ and q_2 is chosen to maximize $\alpha \Pi_2(q_1,q_2) = \alpha q_2(60-q_1-q_2)$. Solving $\frac{\partial \Pi_1}{\partial q_1} = 0$ and $\frac{\partial \Pi_2}{\partial q_2} = 0$ gives $q_1 = 12$ and $q_2 = 24$. Player 1’s payoff is $(1-\alpha)\Pi_1(12,24) = (1-\alpha)144$ and player 2’s payoff is $\Pi_2(12,24) - \alpha R_2(12,24) = 288 - \alpha 576$.

Subgame 3: this is the same as subgame 2, with the roles reversed. Thus Player 1’s payoff is $288 - \alpha 576$ and Player 2’s payoff is $(1-\alpha)144$. (In this game q_1 is chosen to maximize $\alpha R_1(q_1,q_2) = \alpha q_1(60-q_1-q_2)$ and q_2 is chosen to maximize $\alpha \Pi_2(q_1,q_2) = \alpha \left(q_2(60-q_1-q_2)-12q_2\right)$). Solving $\frac{\partial R_1}{\partial q_1} = 0$ and $\frac{\partial \Pi_2}{\partial q_2} = 0$ gives $q_1 = 24$ and $q_2 = 12$. Player 1’s is $\Pi_1(24,12) - \alpha R_1(24,12) = 288 - \alpha 576$ and player 2’s payoff is $(1-\alpha)\Pi_2(24,12) = (1-\alpha)144$.)
Subgame 4: q_1 is chosen to maximize $\alpha R_1(q_1, q_2) = \alpha q_1(60-q_1-q_2)$ and q_2 is chosen to maximize $\alpha R_2(q_1, q_2) = \alpha q_2(60-q_1-q_2)$. Solving $\frac{\partial R_1}{\partial q_1} = 0$ and $\frac{\partial R_2}{\partial q_2} = 0$ gives $q_1 = 20$ and $q_2 = 20$. Player 1’s is $\Pi_1(20,20) - \alpha R_1(20,20) = 160 - \alpha 400$ and similarly for Player 2.

Thus the game reduces to:

![Game Diagram]

The strategic form is

<table>
<thead>
<tr>
<th>Profit contract</th>
<th>Revenue contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1-\alpha)256, (1-\alpha)256$</td>
<td>$(1-\alpha)144, 288-\alpha576$</td>
</tr>
<tr>
<td>$288-\alpha576, (1-\alpha)144$</td>
<td>$160-\alpha400, 160-\alpha400$</td>
</tr>
</tbody>
</table>

The Nash equilibria of this game are as follows:

1. If $\alpha < \frac{1}{16}$ then R (a Revenue contract) is a strictly dominant strategy for each player and thus (R,R) is the only Nash equilibrium.
2. If $\alpha = \frac{1}{16}$ then R is a weakly dominant strategy for each player; there are 3 Nash equilibria: $(R,R), (R,P)$ and (P,R).
3. If $\frac{1}{16} < \alpha < \frac{1}{10}$ there are two Nash equilibria: (R,P) and (P,R).
4. If $\alpha = \frac{1}{10}$ then P is a weakly dominant strategy for each player; there are 3 Nash equilibria: $(P,P), (R,P)$ and (P,R).
5. If $\alpha > \frac{1}{10}$ then P is a strictly dominant strategy for each player and thus (P,P) is the only Nash equilibrium.

(c) From the calculations for Subgame 1, we get that in the past each firm had a profit of 256. When α is small, the only equilibrium involves a revenue contract for each manager, yielding an income of at most 160 for each owner. Thus delegation has reduced the owners’ incomes. This is a Prisoners’ Dilemma situation: when one of the firms delegates with a revenue contract then the other must too, giving rise to a Pareto inefficient situation (from the point of view of the owners only).