HOMEWORK 6: ANSWERS

(a) Suppose there is a signaling equilibrium where type L chooses education level e_L and is paid θ_L and type H chooses education level e_H and is paid θ_H , with $e_L \neq e_H$. Then the following incentive compatibility constraints must be satisfied (the first is type L's and the second type H's):

$$\theta_{L} - e_{L}\theta_{L} \ge \theta_{H} - e_{H}\theta_{L}$$
(1)
$$\theta_{H} - e_{H}\theta_{H} \ge \theta_{L} - e_{L}\theta_{H}$$
(2)

Adding (1) and (2) and simplifying we get that $e_L(\theta_H - \theta_L) \ge e_H(\theta_H - \theta_L)$ from which it follows (since $\theta_H - \theta_L \ge 0$ and $e_L \ne e_H$) that $e_L \ge e_H$. But then (1) is violated because $\theta_H - e_H \theta_L \ge \theta_H - e_L \theta_L \ge \theta_H - e_L \theta_L$.

(b) (b.1) Let us look for a pooling equilibrium where both types choose $e = e^*$. Let $\overline{\theta} = \mu_H \theta_H + (1 - \mu_H) \theta_L$. The incentive compatibility constraints are:

$$\overline{\theta} - e^* \theta_L \ge \theta_L - e \theta_L, \quad \forall e \in [0, \infty), \ e \neq e^*$$
(1)
$$\overline{\theta} - e^* \theta_H \ge \theta_L - e \theta_H, \quad \forall e \in [0, \infty), \ e \neq e^*$$
(2)

Since the RHS of (1) and (2) is decreasing in *e* we can rewrite (1) as $\overline{\theta} - e^* \theta_L \ge \theta_L$ and (2) as $\overline{\theta} - e^* \theta_H \ge \theta_L$. If the latter is satisfied then so is the former, since $\theta_L < \theta_H$. Thus the necessary and sufficient condition for a pooling equilibrium where both types choose $e = e^*$ is $\overline{\theta} - e^* \theta_H \ge \theta_L$, that is, $e^* \le \frac{\overline{\theta} - \theta_L}{\theta_H}$. Another possibility is a pooling equilibrium where both types choose e = 0. In this case the incentive compatibility constraints are as follows (since choosing *e* such that $0 < e < e^*$ is strictly dominated by choosing $e = e^*$):

$$\theta_L \ge \overline{\theta} - e^* \theta_L$$
 (1')
$$\theta_I \ge \overline{\theta} - e^* \theta_H$$
 (2')

Since $\theta_L < \theta_H$, if (1') is satisfied then so is (2'). Thus a necessary and sufficient condition for a pooling equilibrium where both types choose e = 0 is $e^* \ge \frac{\overline{\theta}}{\theta_L} - 1$. (b.2) When $\mu_H = \frac{2}{5}$, $\theta_L = 1$ and $\theta_H = 6$ we get that $\overline{\theta} = \frac{2}{5}6 + \frac{3}{5}1 = 3$ and thus, using the calculations of part (b.1) we conclude that any $e^* \le \frac{3-1}{6} = \frac{1}{3}$ gives rise to a pooling equilibrium where both types choose $e = e^*$ and any $e^* \ge 2$ gives rise to a pooling equilibrium where both types choose e = 0.

(c) (c.1) Let us look for a pooling equilibrium where both types choose $e = e^*$. The incentive compatibility constraints are:

$$\overline{\theta} - e^* \theta_L \ge \theta_L - e \theta_L, \quad \forall e \in [0, e^*)$$
(1a)

$$\overline{\theta} - e^* \theta_L \ge \theta_H - e \theta_L, \quad \forall e \in [\hat{e}, \infty)$$
(1b)
$$\overline{\theta} - e^* \theta_H \ge \theta_L - e \theta_H, \quad \forall e \in [0, e^*)$$
(2a)
$$\overline{\theta} - e^* \theta_H \ge \theta_L - e \theta_H, \quad \forall e \in [\hat{e}, \infty)$$
(2b)

$$-e \,\theta_H \ge \theta_L - e \theta_H, \quad \forall e \in [0, e]$$
(2a)

$$\theta - e^* \theta_H \ge \theta_H - e \theta_H, \quad \forall e \in [\hat{e}, \infty)$$
 (2b)

Since the RHS of each inequality is decreasing in e, we can rewrite them as

$$\begin{split} &\overline{\theta} - e^* \theta_L \ge \theta_L \qquad (1a) \\ &\overline{\theta} - e^* \theta_L \ge \theta_H - \hat{e} \theta_L \qquad (1b) \\ &\overline{\theta} - e^* \theta_H \ge \theta_L \qquad (2a) \\ &\overline{\theta} - e^* \theta_H \ge \theta_H - \hat{e} \theta_H \qquad (2b) \end{split}$$

First of all, note that – since $\theta_L < \theta_H$ – (2a) implies (1a). Thus we only need to consider the remaining inequalities, which can be re-written as follows:

$$(\hat{e} - e^{*})\theta_{L} \ge \theta_{H} - \overline{\theta}$$
(1b)
$$\overline{\theta} \ge \theta_{L} + e^{*}\theta_{H}$$
(2a)
$$(\hat{e} - e^{*})\theta_{H} \ge \theta_{H} - \overline{\theta}$$
(2b)

Since $\hat{e} > e^*$ and $\theta_H > \theta_L$, $(\hat{e} - e^*)\theta_H > (\hat{e} - e^*)\theta_L$ and thus (1.b) implies (2.b). Thus we only need to consider the two inequalities

$$(\hat{e} - e^*)\theta_L \ge \theta_H - \overline{\theta}$$
(1b)
$$\overline{\theta} \ge \theta_L + e^*\theta_H$$
(2a)

Since $\overline{\theta} > \theta_L$ inequality (2a) can be satisfied if e^* is sufficiently close to 0. Furthermore, if $(\hat{e} - e^*)$ is sufficiently large then also (1b) is satisfied. Thus a pooling equilibrium where both types choose $e = e^*$ can exist. For example, if $\mu_H = \frac{2}{5}$, $\theta_L = 1$ and $\theta_H = 6$ so that $\overline{\theta} = \frac{2}{5}6 + \frac{3}{5}1 = 3$, then any pair (e^*, \hat{e}) such that $e^* \le \frac{1}{3}$ and $\hat{e} \ge e^* + 3$.

Now let us look for a pooling equilibrium where both types choose e = 0. Then the incentive compatibility constraints are:

$$\begin{aligned} \theta_{L} \geq \overline{\theta} - e^{*} \theta_{L} & (1a) \\ \theta_{L} \geq \theta_{H} - \hat{e} \theta_{L} & (1b) \\ \theta_{L} \geq \overline{\theta} - e^{*} \theta_{H} & (2a) \\ \theta_{L} \geq \theta_{H} - \hat{e} \theta_{H} & (2b) \end{aligned}$$

Since $\overline{\theta} > \theta_L$, (1a) implies (2a) and (1b) implies (2b). Thus a necessary and sufficient condition is $\theta_L \ge Max \{ \overline{\theta} - e^* \theta_L, \theta_H - \hat{e} \theta_L \} \}$, that is, $e^* \ge \frac{\overline{\theta}}{\theta_L} - 1$ and $\hat{e} \ge \frac{\theta_H}{\theta_L} - 1$.

One could also look for necessary and sufficient conditions for a pooling equilibrium where both types choose $e = \hat{e}$. The logic is the same.

(c.2) When $\mu_H = \frac{2}{5}$, $\theta_L = 1$ and $\theta_H = 6$ we get that $\overline{\theta} = \frac{2}{5}6 + \frac{3}{5}1 = 3$ and thus a sufficient condition for a pooling equilibrium where both types choose e = 0 is $e^* \ge 2$ and $\hat{e} \ge 5$.