ECN/ARE 200C : MICRO THEORY

HOMEWORK 6 (for due date see the web page)

Let $e \in [0, \infty)$ denote the amount of education. There are two types of potential workers: those with productivity θ_L and those with productivity θ_H , with $\theta_H > \theta_L > 0$. Each potential worker knows what her productivity is, while the potential employer does not. For each type $i \in \{H, L\}$ the cost of acquiring *e* units of education is $e\theta_i$. The fraction of type *H* in the population is $\mu_H \in (0,1)$.

- (a) Is there a signaling equilibrium where the employer offers a salary $w = \theta_L$ to those who choose education level e_L and salary $w = \theta_H$ to those who choose education level e_H with $e_L \neq e_H$ and refuses to hire anybody with education level $e \notin \{e_L, e_H\}$? (Recall that at a signaling equilibrium each worker is paid a wage equal to her actual productivity.) If there is a signaling equilibrium, describe it. If not, explain why not.
- (b) (b.1) Suppose that the employer offers the following wage schedule (AP means "average productivity"): $\begin{cases} AP & \text{if } e = e^* \\ \theta_L & \text{if } e \neq e^* \end{cases}$ Find necessary and sufficient conditions for a pooling equilibrium, that is, an equilibrium where both types make the same education choice (thus it is not a signaling equilibrium, since workers are not paid a salary equal to their productivity). (b.2) Find all the pooling equilibria when $\mu_H = \frac{2}{5}$, $\theta_L = 1$ and $\theta_H = 6$.
- (c) (c.1) Suppose that the employer offers the following wage schedule (where $0 < e^* < \hat{e}$):

 $\begin{cases} \theta_L & \text{if } e < e^* \\ \text{AP} & \text{if } e^* \le e < \hat{e} \\ \theta_H & \text{if } e \ge \hat{e} \end{cases}$ Find necessary and sufficient conditions for a pooling equilibrium.

(c.2) Find a pooling equilibrium when $\mu_H = \frac{2}{5}$, $\theta_L = 1$ and $\theta_H = 6$.