

NATURE
NATURE
NATURE
NATURE
NATURE
With
$$A \Rightarrow \frac{2}{3}1 + \frac{1}{3} < 0 \text{ if } D$$

with $B \Rightarrow \frac{2}{3}0 + \frac{1}{3} < \frac{0}{3} \text{ if } D$
with $B \Rightarrow \frac{2}{3}0 + \frac{1}{3} < \frac{0}{3} \text{ if } D$
B optimul if F player 2
Plays D at right into set
 $A \Rightarrow 3 B \Rightarrow 0$

Suppose that Player 1's pure strategy involves playing *A* at his left information set.

$$\begin{array}{l} \Rightarrow C \rightarrow \frac{1}{4}O + \frac{3}{4}3 = \frac{9}{4}\\ D \rightarrow \frac{1}{4}I + \frac{3}{4}I = 1\\ D & \text{or or primel} \end{array}$$

Now confirm that for Player 1 "play" is optimal
pass
$$\rightarrow 2$$

play $\rightarrow \frac{1}{5}0 + \frac{1}{5}2 + \frac{3}{5}4 = \frac{14}{5} > 2$

Page 18 of 18

EXAMPLE 1: Selten's Chain-Store Game

The one-shot game is as follows:

		Chain store	
		fight	accommodate
Potential entrant	In	0,0	2,2
	Out	1,5	1,5

What is the backward induction solution to this game? The case m = 2:

Add incomplete information

Payoffs are as follows: Top: PE-1, Middle: Incumbent, Bottom: PE-2.

TH >TL >0

 $\Pi_{L} - M_{H} < O$

