





















































































Cournot oligopoly

Fixed number of firms u no entry no exit

Homogeneous product

Inverse demand function P P Q Q industry output

Firm is lost funition i City
Objective of each firm is to maximize its
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Properties of CNE continued 
Example. Two firms, each can produce either 1 or 2 units at zero cost. The 
demand function is:  
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Theorem 2. Let q q q n  ( ,..., )1  be a CNE with * 0iq    i n1,..., .  Then there 

exists a q q   such that,  *ˆi iq q   and   i iq q( ) ( )  ,        i n1,..., . 
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Linear demand and identical firms:   

P(Q) = a bQ         Ci(qi) = c qi     (0 < c < a,  b > 0) 
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  (profit per firm). 

 

  



Existence of CNE 
Existence theorem (sufficient conditions) for general games: if 

Si  is convex and compact 

i  is continuous and concave in si    

then  a NE exists 
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Joseph Bertrand (1883): what if we maintain the assumptions of Cournot’s model but replace 
quantity competition with price competition? Assume that 

 If all firms choose the same price, then consumers pick a firm at random so that each firm 
expects to get  1

n
 of the total demand (where n is the number of firms); 

 If prices are different, then all consumers buy from the cheapest firm (if there is more than one 
cheapest firm, then consumers pick randomly among them). 

 All firms have the same cost function given by  C q cqi i i( )   
   

Bertrand’s theorem. Let p p pn
* * *( ,..., ) 1 be a Bertrand-Nash 

equilibrium. Then,  
(1) for all i  = 1,… n,  pi  c,   and 

(2) for at least two firms j and k (j  k), p p cj k
* *  . 
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