- · Fixed number of firms n (no entry, no exit)
- · Homogeneous product
- · Inverse demand Function P = P(Q) Q = industry output
- · Firm is cost function Ci = Ci(qi)
- Objective of each firm is to maximize its own profits, $\Pi_i = q_i P(q_1+q_2+\dots+q_n) - Ci(q_i)$ • $q_i = (q_1 + q_2 + \dots + q_n) - Ci(q_i)$
- $q = (q_{1}, q_{2}, ..., q_{n})$ $q_{-i} = (q_{1}, ..., q_{i-1}, q_{i+1}, ..., q_{n})$
 - $q^* = (q_1^*, ..., q_n^*)$ is an equilibrium if $T_i(q^*) \ge T_i(q_i, q_{-i}^*)$ $\forall q_i \ge 0$, $\forall i$

Theorem 1. At a Cournot-Nash equilibrium

$$q^* \int_{1}^{1} P^* > MC_i^* = \frac{d}{dq_i} C(q_i^*) \quad \forall i$$

 $q^* \int_{1}^{1} = \frac{d}{q_i^*} C(q_i^*) \quad \forall i$
 $q^* + q_i^* + \dots + q_n^* \qquad \qquad \begin{bmatrix} Cournot i \\ P(q) = a - b q \\ Ci(q_i) = c q_i \end{bmatrix}$
Si = Eo, ∞)
At a CNE $\pi_i (q_{i,i}^*, q_{-i}^*) \geq \pi_i (q_{i,i} q_{-i}^*) \quad \forall q_i \geq 0$
 $q_i^* \quad \max \min 2e_i \quad \prod_i (\cdot, q_{-i}^*)$
it must be that $\frac{\partial \pi_i}{\partial q_i^*} (q_{i,i}^*, q_{-i}^*) = 0$

 $\pi_i = q_i P(R) - Ci(q_i)$ $\frac{\partial \pi_i}{\partial q_i} = P(q) + q_i \frac{dP}{dQ} \frac{\partial q}{\partial q_i} - \frac{dC_i}{dq_i}$ $\frac{\partial \pi_i}{\partial q_i} (q^*) = \frac{P(Q^*)}{P^*} + \frac{q^*}{q_i} \frac{dP}{dQ} (Q^*) - \frac{dC_i}{dq_i} (q^*_i) = 0$ MC $P^* = MC_i^* - \frac{q_i^*}{1} \frac{dP}{dQ}(Q^*)$ S MC:

Properties of CNE continued

Example. Two firms, each can produce either 1 or 2 units at zero cost. The demand function is:

Theorem 2. Let $q^* = (q^*_1, ..., q^*_n)$ be a CNE with $q_i^* > 0 \quad \forall i = 1, ..., n$. Then there exists a $\hat{q} \neq q^*$ such that, $\hat{q}_i < q_i^*$ and $\pi_i(\hat{q}) > \pi_i(q^*)$, $\forall i = 1, ..., n$.

$$\Pi_{i}(\hat{q}) - \Pi_{i}(q^{*}) = \left(\begin{array}{c} \sum_{j=1}^{n} \frac{\partial \Pi_{i}}{\partial \hat{q}_{j}}(q^{*}) \cdot (\hat{q}_{j} - \hat{q}_{j}^{*}) \right) \\ Since q^{*} \text{ is } u \quad CNE \\ \frac{\partial \Pi_{i}}{\partial \hat{q}_{i}}(q^{*}) = 0 \\ \frac{\partial \Pi_{i}}{\partial \hat{q}_{i}}(q^{*}) = 0 \\ \text{if choose } \hat{q}_{j} < \hat{q}_{i}^{*} \\ \frac{\partial \Pi_{i}}{\partial \hat{q}_{j}}(q^{*}) \cdot (\hat{q}_{j} - \hat{q}_{j}^{*}) > 0 \\ j \neq i \end{array} \right)$$

T

 $\pi_i = q_i P(q_1 + \dots + q_m) - Ci(q_i)$ j $\neq i$ $\frac{\partial \pi_i}{\partial q_j} = \frac{\pi_i}{\partial q_j} \frac{\partial P(q^*)}{\partial q_j} < D$

Linear demand and identical firms:

$$q_i^*(n) = \frac{a-c}{(n+1)b}$$
 (output of each firm)

$$Q^*(n) = \frac{n(a-c)}{(n+1)b} = \frac{a-c}{\left(1+\frac{1}{n}\right)b} \quad \text{(industry output)}$$

$$P^*(n) = \frac{a + nc}{n+1} = \qquad (\text{price}) \qquad \frac{dP^*}{dn} = \qquad (\text{since } a > c), \text{ as } n \to \infty, P^* \to c$$

$$\pi_i^*(n) = \frac{(a-c)^2}{(n+1)^2 b} \text{ (profit per firm).}$$

Existence of CNE

Existence theorem (sufficient conditions) for general games: if S_i is convex and compact $S_i = [o_i]$ π_i is continuous and concave in S_i then a NE exists R $\pi_i = q; P(q) - Ci(q_i)$ $\frac{\partial \pi_i}{\partial q_i} = P(Q) + q_i \frac{d P}{d Q} - \frac{d C_i}{\partial q_i}$ $\frac{\partial^2 \pi_i}{\partial q_i^2} = \frac{d P}{\partial Q} + \frac{d P}{\partial Q}$ < 0d 62 2 + if 20 (MC; eine Constant of increasing) S D \mathbf{R} Q

Joseph Bertrand (1883): what if we maintain the assumptions of Cournot's model but replace quantity competition with price competition? Assume that

- If all firms choose the same price, then consumers pick a firm at random so that each firm expects to get $\frac{1}{n}$ of the total demand (where *n* is the number of firms);
- If prices are different, then all consumers buy from the cheapest firm (if there is more than one cheapest firm, then consumers pick randomly among them).
- All firms have the same cost function given by $C_i(q_i) = c q_i$

Bertrand's theorem. Let $p^* = (p_1^*, ..., p_n^*)$ be a Bertrand-Nash equilibrium. Then, (1) for all i = 1, ..., n, $p_i^* \ge c$, and (2) for at least two firms j and $k (j \ne k)$, $p_j^* = p_k^* = c$.

$$P_{M}^{*} = lowest price P_{s}^{*} = second lowest price Step 1 : $P_{M}^{*} \ge c$ imagine $P_{M}^{*} < c$ $T_{m}^{*} < c$
 $Step 2 : P_{s}^{*} = P_{m}^{*}$ imagine $P_{s}^{*} > P_{M}^{*}$$$

1929 Hotelling

