
The Cournot model of oligopoly (Antoine Augustin Cournot, 1838) 

Example:  DUOPOLY 
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Properties of CNE 
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Properties of CNE continued 
Example. Two firms, each can produce either 1 or 2 units at zero cost. The 
demand function is:  
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Theorem 2. Let q q q n  ( ,..., )1  be a CNE with * 0iq    i n1,..., .  Then there 

exists a q q   such that,  *ˆi iq q   and   i iq q( ) ( )  ,        i n1,..., . 

 

  



Linear demand and identical firms:   

P(Q) = a bQ         Ci(qi) = c qi     (0 < c < a,  b > 0) 
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Existence of CNE 
Existence theorem (sufficient conditions) for general games: if 

Si  is convex and compact 

i  is continuous and concave in si    

then  a NE exists 
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Joseph Bertrand (1883): what if we maintain the assumptions of Cournot’s model but replace 
quantity competition with price competition? Assume that 

 If all firms choose the same price, then consumers pick a firm at random so that each firm 
expects to get  1

n
 of the total demand (where n is the number of firms); 

 If prices are different, then all consumers buy from the cheapest firm (if there is more than one 
cheapest firm, then consumers pick randomly among them). 

 All firms have the same cost function given by  C q cqi i i( )   
   

Bertrand’s theorem. Let p p pn
* * *( ,..., ) 1 be a Bertrand-Nash 

equilibrium. Then,  
(1) for all i  = 1,… n,  pi  c,   and 

(2) for at least two firms j and k (j  k), p p cj k
* *  . 

  



 


