The Cournot model of oligopoly (Antoine Augustin Cournot, 1838)

Example: DUOPOLY

n = 2

$$C_1(q_1) = cq_1$$
, $C_2(q_2) = cq_2$, $P(Q) = a - b Q$ $a > 0, b > 0, a > c$ $Q = q_1 + q_2$

Properties of CNE

Theorem 1. Let $q^* = (q_1^*, ..., q_n^*)$ be a CNE with $q_i^* > 0 \quad \forall i = 1, ..., n$. Let $Q^* = \sum_{i=1}^n q_i^*$ and $P^* = P(Q^*)$. Then $P^* > MC_i^* \equiv \frac{dC_i}{dq_i}(q_i^*)$, $\forall i = 1,...,n$, that is price is

greater than marginal cost for every firm.

Properties of CNE continued

Example. Two firms, each can produce either 1 or 2 units at zero cost. The demand function is:

P	Q	
5	0	
4	1	
3	2	
2	3	
1.1	4	

	Firm 2's output		
		1	2
Firm 1's	1		
output	2		

Theorem 2. Let $q^* = (q^*_1, ..., q^*_n)$ be a CNE with $q_i^* > 0 \quad \forall i = 1, ..., n$. Then there exists a $\hat{q} \neq q^*$ such that, $\hat{q}_i < q_i^*$ and $\pi_i(\hat{q}) > \pi_i(q^*)$, $\forall i = 1, ..., n$.

Linear demand and identical firms:

P(Q) = a - bQ $C_i(q_i) = c q_i$ (0 < c < a, b > 0)

$$q_i^*(n) = \frac{a-c}{(n+1)b}$$
 (output of each firm)

$$Q^*(n) = \frac{n(a-c)}{(n+1)b} = \frac{a-c}{\left(1+\frac{1}{n}\right)b} \quad \text{(industry out)}$$

tput)

$$P^*(n) = \frac{a + nc}{n+1} = \qquad (\text{price}) \qquad \frac{dP^*}{dn} = \qquad (\text{since } a > c), \text{ as } n \to \infty, P^* \to c$$

$$\pi_i^*(n) = \frac{(a-c)^2}{(n+1)^2 b}$$
 (profit per firm).

Existence of CNE

Existence theorem (sufficient conditions) for general games: if

 S_i is convex and compact

 π_i is continuous and concave in S_i

then a NE exists

 $\frac{\partial \pi_i}{\partial q_i} =$

 $\frac{\partial^2 \pi_i}{\partial q_i^2} =$

Joseph Bertrand (1883): what if we maintain the assumptions of Cournot's model but replace quantity competition with price competition? Assume that

- If all firms choose the same price, then consumers pick a firm at random so that each firm expects to get $\frac{1}{n}$ of the total demand (where *n* is the number of firms);
- If prices are different, then all consumers buy from the cheapest firm (if there is more than one cheapest firm, then consumers pick randomly among them).
- All firms have the same cost function given by $C_i(q_i) = c q_i$

Bertrand's theorem. Let $p^* = (p_1^*, \dots, p_n^*)$ be a Bertrand-Nash equilibrium. Then, (1) for all $i = 1, \dots, n, p_i \ge c$, and

(2) for at least two firms *j* and *k* ($j \neq k$), $p_j^* = p_k^* = c$.