What happens to the Nash equilibrium in these situations if one of the reaction curves shifts due to a change in a parameter?

The strategic complements case.

$$\begin{cases} D_1 = 40 - 4p_1 + 2p_2 \\ D_2 = 40 + 2p_1 - 4p_2 \end{cases} \qquad \begin{cases} C_1 = c_1q_1 \\ C_2 = c_2q_2 \end{cases} \quad \text{then} \quad \begin{cases} R_1(p_2) = 5 + \frac{1}{4}p_2 + \frac{1}{2}c_1 \\ R_2(p_1) = 5 + \frac{1}{4}p_1 + \frac{1}{2}c_2 \end{cases}$$

The reaction curves are upward-sloping. If the cost of firm 1 goes down, firm 1 becomes more aggressive (for any p_2 the profit-maximizing price for firm 1 is lower), that is, firm 1's reaction curve shifts down. Firm 2 will react by lowering its price too (i.e. will react aggressively) and the result is a new Nash equilibrium with lower prices.

The strategic substitutes case.

$$P = 24 - 4Q \qquad C_1 = c_1 q_1 \qquad C_2 = c_2 q_2. \text{ Then } \begin{cases} R_1(q_2) = 3 - \frac{1}{2} q_2 - \frac{1}{8} c_1 \\ R_2(q_1) = 3 - \frac{1}{2} q_1 - \frac{1}{8} c_2 \end{cases}$$

If the cost of firm 1 goes down, firm 1 becomes more aggressive (for any q_2 the profit-maximizing output for firm 1 is higher), that is, firm 1's reaction curve shifts up. Firm 2 will react by lowering its output and the result is a new Nash equilibrium with higher output for firm 1 and lower output for firm 2.

ULTIMATUM GAME

Player 1 is given some money.

He makes an offer to Player 2.

If Player 2 says Yes, then the offer is implemented.

If Player 2 says No, then both players end up with nothing.

How much should Player 1 offer to Player 2?

Player 1 is given \$40. He makes an offer to Player 2 (\$10 or \$20 or \$30). If Player 2 says Yes, then the offer is implemented. If Player 2 says No, then both players end up with nothing.

BACKWARD INDUCTION

Suppose that Player 2 is fairness-minded and averse to greed:

Utility

best	\$20, \$20
	\$10, \$30
	\$0,\$0
worst	\$30,\$10

BACKWARD INDUCTION	selfish and gree.	Suppose tha f airness mi Jy greed:	Suppose that Player 2 is Clas fairness minded and averse to greed:	
	· ·		Utility	
		best	\$10, \$30	
			\$20,\$20	
			\$30,\$10	
		worst	\$°, \$0	

Centipede Game

- A referee pust \$20 on the table.
- Player 1 can take it and end the game or Pass.
- If Player 1 passes, the referee adds \$20 to the pot and Player 2 can take it and end the game or Pass.
- If Player 2 passes then the referee adds another \$20 to the pot and Player 1 can take it and end the game or Pass.
 ... and so on.
- At the last move the active player can take the pot for herself or can Pass, in which case the pot is divided equally between the two players.

A divorce

Mrs. Jones is seeking a divorce from Mr. Jones. Under the terms of her prenuptial agreement, her settlement will be **\$90,000** if she can prove that Mr. Jones had an affair, but **\$45,000** otherwise. Her lawyer, acting as her agent, can indeed prove the affair but only if he hires a private detective for **\$10,000**, which he will have to pay out of his own pocket. The lawyer has offered Mrs. Jones a choice of two contracts. One contract involves a flat payment to the lawyer of **\$18,000**, regardless of the outcome. The other contract involves a fee equal to one third of the settlement. What contract should Mrs. Jones choose?

Backward-induction solution

The race to 38. Players 1 and 2 take turns choosing a number from the set {1,2,3,4,5}. The first player to bring the total sum of the chosen numbers to 38 wins.

The race to 38. Players 1 and 2 take turns choosing a number from the set {1,2,3,4,5}. The first player to bring the total sum of the chosen numbers to 38 wins.

Player 1 has a winning strategy; first pick Z then at every stage

	if no opponent			reut	picne	picnez n, you		
	pick	6~	И			20	1	
				0	5720	$\begin{bmatrix} 32 \\ 4 \end{bmatrix} = \begin{bmatrix} 32 \\ 3 \end{bmatrix}$)	
1	2		3	2				
2	5	3	4		2	3		
	7	11	18	21	28			

A monopolist and a potential entrant

A chain-store (monopolist) and many potential entrants

The chain store is a monopoly in *n* towns. There are *n* potential entrants, one in each town. They make decisions sequentially with perfect knowledge of what happened in the past.

