Computing the mixed-strategy Nash equilibria

Theorem. At a Nash equilibrium in mixed strategies, a player must be indifferent between any two PURE strategies that she plays with positive probability.

		Player 2					
		C D					
Player 1	A	15	3	36	0		
	В	34	0	30	2		

Theorem. At a Nash equilibrium in mixed strategies, a player must be indifferent between any two strategies that she plays with positive probability.

Provides a necessary, but not sufficient, condition for a mixed-strategy profile to be a Nash equilibrium

Player 2

Theorem: A strategy can be played with positive probability at a Nash equilibrium only if it survives the IDSDS procedure.

		С	D	E
	A	1,4	4,2	0,8
1	В	4,0	2,1	2,0
	С	2,3	6,4	1,6

		D		E	F	F	
	Α	0	1	3	0	5	0
Player 1	В	1	2	1	4	2	3
	С	3	0	0	2	0	1

		D		E	F	F	
	Α	0	1	3	0	5	0
Player 1	В	1	2	1	4	2	3
	С	3	0	0	2	0	1

Cardinal IDSDS (Iterated Deletion of Strictly Dominated pure Strategies)

				Play	er 2				
	-	l)	E		F		G	
חן ד	A	6	8	4	2	2	4	2	3
Player 1	B	0	0	2	6	8	2	0	1
1	С	2	8	2	8	4	12	0	11

c,g

BEHAVIORAL STRATEGIES IN EXTENSIVE GAMES

THEOREM (Kuhn, 1953). In an extensive game **with perfect recall**, mixed and behavior strategies are equivalent. [For a precise statement of "equivalence" see the textbook.]

What does Perfect Recall mean?

INSURANCE MARKETS

Consider an individual with

- W initial wealth
- *L* potential loss
- *p* probability of loss

With no insurance she faces the money lottery

An **insurance contract** is a pair (*h*,*d*)

h	premium
d	deductible
L-d	insured amount of the loss

With contract (h,d) the individual faces the lottery

- If d = 0
- If d > 0

Would the individual purchase the full-insurance contract with h = pL?

- If she is risk averse then
- If she is risk neutral then
- If she is risk loving then

A contract expressed as a pair (h,d) can be translated into a point in wealth space as follows:

Here we have: W = L =

ISOPROFIT LINES

Assume that the **insurance company** is **risk neutral** so that it considers selling an insurance contract C = (h,d), corresponding to the lottery

We denote the expected profit from contract (h,d) by $\pi(h,d)$. Thus

$$\pi(h,d) =$$

If the contract is expressed as a point (W_1, W_2) in wealth space then

Suppose that $p = \frac{1}{10}$. What is $\pi(A)$? What is $\pi(B)$?

An **isoprofit line** is defined as a line joining contracts that give the same expected profit. Let $A = (W_1^A, W_2^A)$ and $B = (W_1^B, W_2^B)$ be such that $\pi(A) = \pi(B)$

Since No Insurance can be thought of as the trivial contract h = 0 and d = L, which gives zero profits, the isoprofit line going through the NI point is the zero-profit line:

BINARY LOTTERIES

Lotteries of the form $\begin{pmatrix} \$x & \$y \\ p & 1-p \end{pmatrix}$ with *p* fixed and *x* and *y* allowed to vary.

We want to draw indifference curves in this diagram.

Case 2: risk-averse agent

 $\mathbb{E}[U(C)] =$

The indifference curve must lie below the straight-line segment joining A and B.

Slope of indifference curve

Let *A* and *B* be two points that lie on the same indifference curve: $\mathbb{E}[U(A)] = \mathbb{E}[U(B)]$,

• Since x_B is close to x_A , $U(x_B) \simeq$

• Since y_B is close to y_A , $U(y_B) \simeq$

Thus the RHS of (*) can be written as

So (*) becomes

that is,

which can be written as

(*)

Comparing the slope at a point with the ratio $\frac{p}{1-p}$

Look at the case of risk aversion but the other cases are similar.

• at a point **above** the 45° line, where x < y,

- at a point on the 45° line, where x = y,
- at a point **below** the 45° line, where x > y,