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Theorem 2.  Let     be a von Neumann-Morgenstern ranking of the set of basic lotteries L. Then the following are true. 

(A) If :U Z    is a von Neumann-Morgenstern utility function that represents   , then, for any two real numbers a and b 
with a > 0, the function :V Z    defined by ( ) ( )i iV z aU z b   (i = 1,2,…,m) is also a von Neumann-Morgenstern 
utility function that represents   . 

 (B) If :U Z    and :V Z    are two von Neumann-Morgenstern utility functions that represent   , then there exist two 
real numbers a and b with a > 0 such that ( ) ( )i iV z aU z b   ( i = 1,2,…,m). 
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EXAMPLE. Consider the following game frame: 

A

B

Player 2

C D

Player 1

1 2
1 1
2 2

z z 
 
  3z

4z1 3
1 2
3 3

z z 
 
   

Suppose that Player 1 has the following ranking of the set of basic outcomes: 
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Construct the normalized utility function for Player 1: 
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Player 2 has the following ranking of the set of basic outcomes: 
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Construct the normalized utility function for Player 2: 
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If we don’t want to deal with fractional numbers, we can multiply the payoffs of Player 1 by 36 
and the payoffs of Player 2 by 6 to get the following game, which is the same game as the one 
given above: 

A 15 3 36 0

B 34 0 30 2

Player 2

C D

Player 1

 

This game has no Nash equilibria in pure strategies, but as we will see  it has a Nash 
equilibrium in mixed strategies. 
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