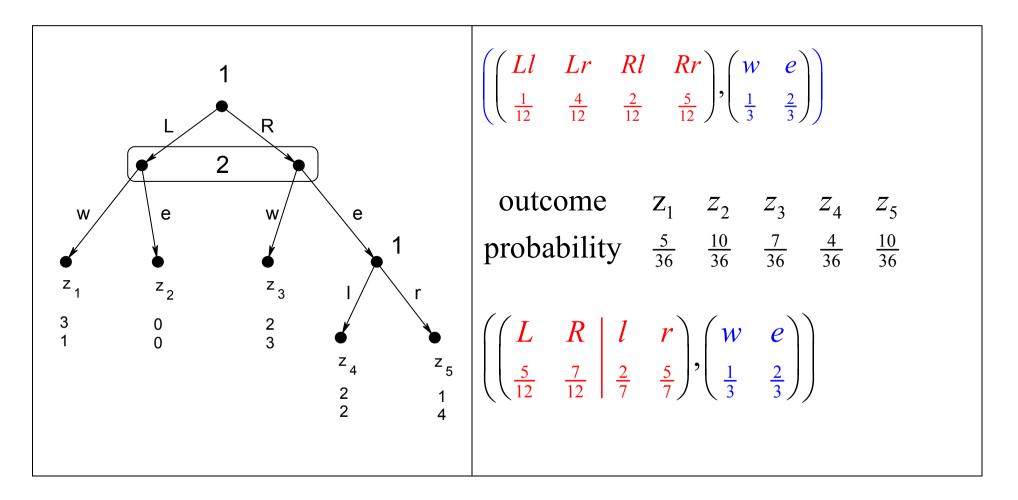


BEHAVIORAL STRATEGIES IN EXTENSIVE GAMES



THEOREM (Kuhn, 1953). In an extensive game with perfect recall, mixed and behavior strategies are equivalent. [For a precise statement of "equivalence" see the textbook.]

What does Perfect Recall mean?

INSURANCE MARKETS

Consider an individual with

- W initial wealth
- *L* potential loss
- *p* probability of loss

With no insurance she faces the money lottery

An **insurance contract** is a pair (*h*,*d*)

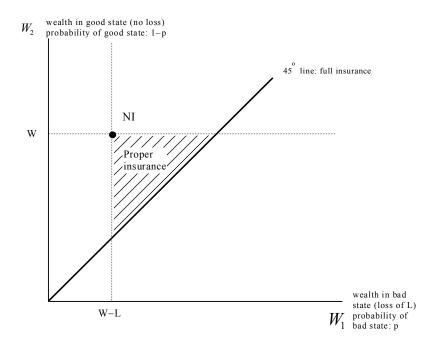
h	premium
d	deductible
L-d	insured amount of the loss

With contract (h,d) the individual faces the lottery

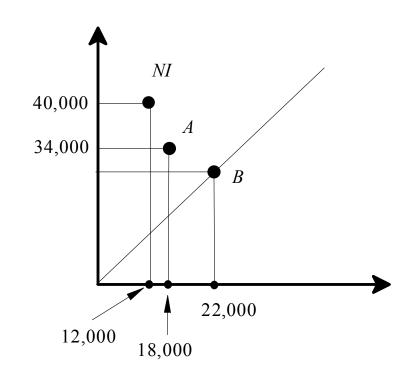
- If d = 0
- If d > 0

Would the individual purchase the full-insurance contract with h = pL?

- If she is risk averse then
- If she is risk neutral then
- If she is risk loving then



A contract expressed as a pair (h,d) can be translated into a point in wealth space as follows:



Here we have: W = L =

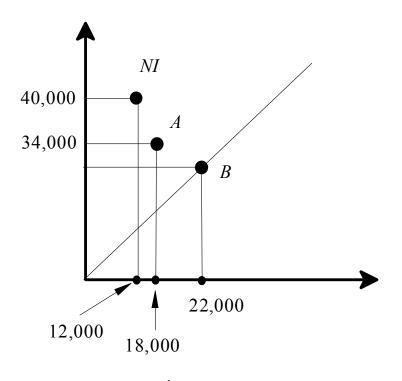
ISOPROFIT LINES

Assume that the **insurance company** is **risk neutral** so that it considers selling an insurance contract C = (h,d), corresponding to the lottery

We denote the expected profit from contract (h,d) by $\pi(h,d)$. Thus

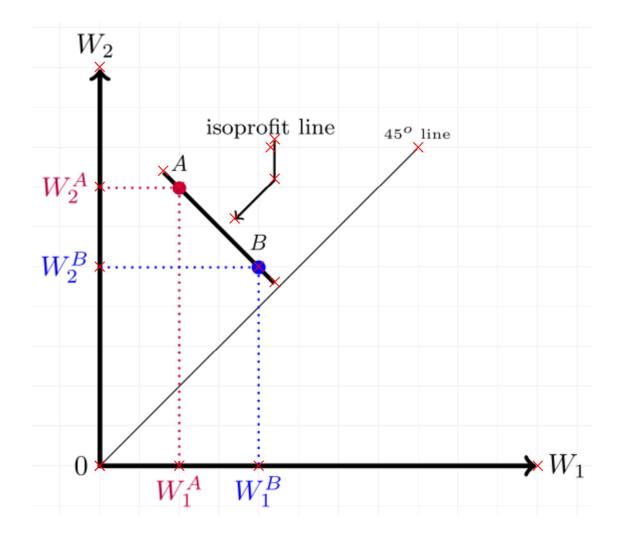
$$\pi(h,d) =$$

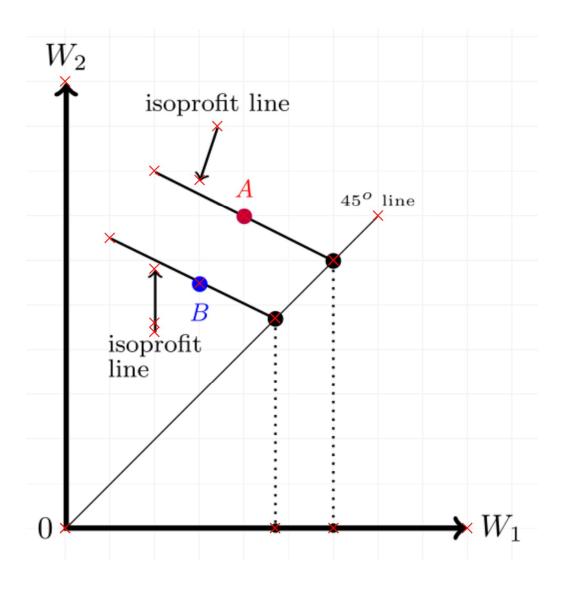
If the contract is expressed as a point (W_1, W_2) in wealth space then

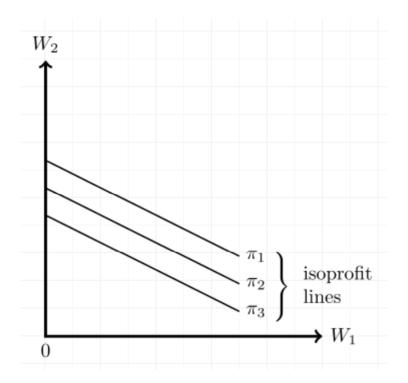


Suppose that $p = \frac{1}{10}$. What is $\pi(A)$? What is $\pi(B)$?

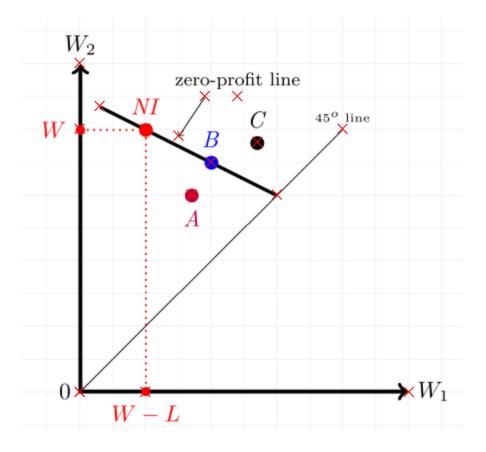
An **isoprofit line** is defined as a line joining contracts that give the same expected profit. Let $A = (W_1^A, W_2^A)$ and $B = (W_1^B, W_2^B)$ be such that $\pi(A) = \pi(B)$





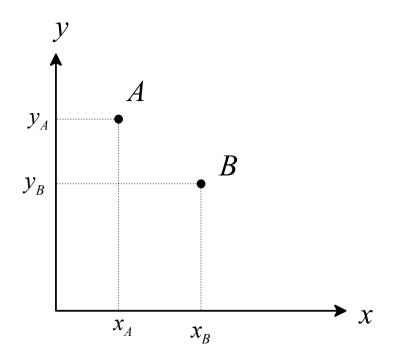


Since No Insurance can be thought of as the trivial contract h = 0 and d = L, which gives zero profits, the isoprofit line going through the NI point is the zero-profit line:



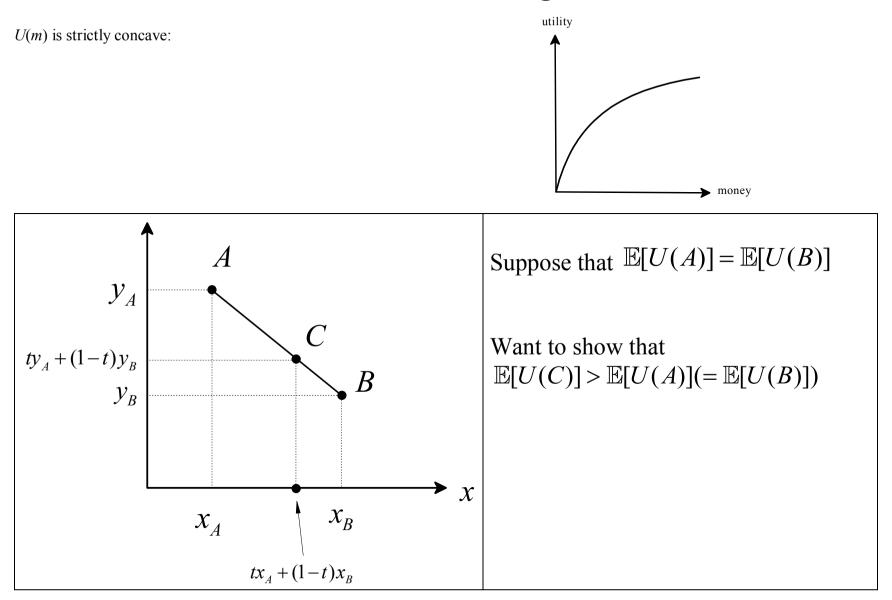
BINARY LOTTERIES

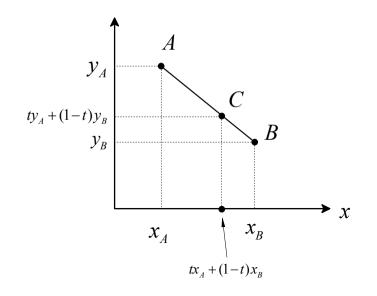
Lotteries of the form $\begin{pmatrix} \$x & \$y \\ p & 1-p \end{pmatrix}$ with *p* fixed and *x* and *y* allowed to vary.



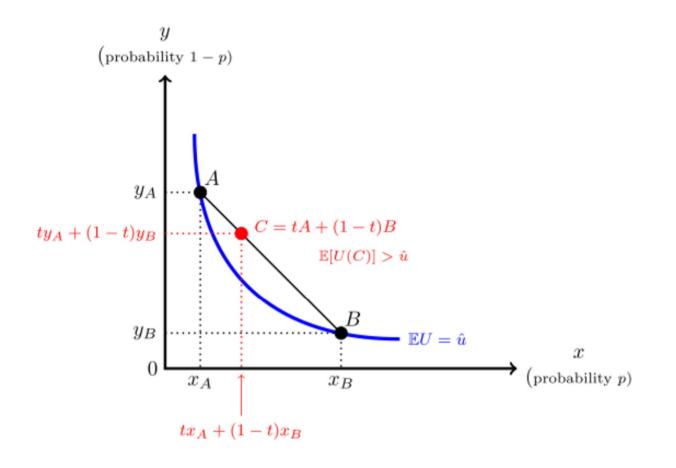
We want to draw indifference curves in this diagram.

Case 2: risk-averse agent





The indifference curve must lie below the straight-line segment joining *A* and *B*.



Slope of indifference curve

Let *A* and *B* be two points that lie on the same indifference curve: $\mathbb{E}[U(A)] = \mathbb{E}[U(B)]$, (*)

- Since x_B is close to x_A , $U(x_B) \simeq$
- Since y_B is close to y_A , $U(y_B) \simeq$

Thus the RHS of (*) can be written as

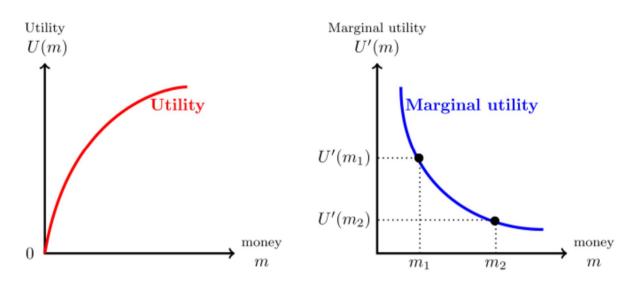
So (*) becomes

that is,

which can be written as

Comparing the slope at a point with the ratio $\frac{p}{1-p}$

Look at the case of risk aversion but the other cases are similar.



• at a point **above** the 45° line, where x < y,

- at a point on the 45° line, where x = y,
- at a point **below** the 45° line, where x > y,