2. Suppose the insurance industry is perfectly competitive

A contract that yields zero profit is called a **fair contract** and the zero profit line is called the **fair odds line**. Recall that the zero profit line is the straight line that goes through the No Insurance point and has slope $-\frac{p}{1-p}$.

Define an equilibrium in a competitive insurance industry as a situation where

- (1) every firm makes zero profits and
- (2) no firm (existing or new) can make positive profits by offering a new contract.

By the zero-profit condition (1), any equilibrium contract must be on the zero-profit line.

$$d_D = 0$$
 and $h_D =$

Adverse selection in insurance markets

Two types of customers, H and L, identical in terms of initial wealth W, potential loss L and vNM utility-of-money function U, but with different

probability of loss: $p_H > p_L$.

Slope of indifference curves at point (w_1, w_2)

Page 1 of 10

 h_{H}^{*} maximum premium that the *H* people are willing to pay for full insurance h_{L}^{*} maximum premium that the *L* people are willing to pay for full insurance:

Let q_H be the fraction of *H* types in the population $0 < q_H < 1$

If $\mathbb{E}[U_L(C)] \ge \mathbb{E}[U_L(NI)]$ then $\mathbb{E}[U_H(C)] \ge \mathbb{E}[U_H(NI)]$

Case 1: MONOPOLY

OPTION 1. Offer only one contract, which is attractive only to the H type.

 $C_1 = ($,) Profits: $\pi_1^* =$

OPTION 2. Offer only one contract, which is attractive to both types. **Not optimal to offer full insurance**

Best contract under Option 2:

$$\pi_{2}^{*} =$$

OPTION 3: Offer two contracts, $C_H = (h_H, d_H)$, targeted to the *H* type $C_L = (h_L, d_L)$ targeted to the *L* type.

expected utility for L-type from C_L : $EU_L[C_L] =$ expected utility for L-type from C_H : $EU_L[C_H] =$ expected utility for H-type from C_L : $EU_H[C_L] =$ expected utility for H-type from C_H : $EU_H[C_H] =$ expected utility for L-type from NI: $EU_L[NI] =$ expected utility for L-type from NI: $EU_L[NI] =$ Monopolist's problem is to

$$\begin{split} &\underset{h_{H},d_{H},h_{L},d_{L}}{\operatorname{Max}} \pi_{3} = q_{H}N[h_{H} - p_{H}(L - d_{H})] + (1 - q_{H})N[h_{L} - p_{L}(L - d_{L})] \\ & \text{subject to} \\ & (IR_{L}) \\ & (IC_{L}) \\ & (IC_{H}) \\ & (IC_{H}) \end{split}$$

 (IR_H) follows from (IR_L) and (IC_H)

Thus, the problem can be reduced to

 $\underbrace{Max}_{h_{H},d_{H},h_{L},d_{L}} \pi_{3} = q_{H}N[h_{H} - p_{H}(L - d_{H})] + (1 - q_{H})N[h_{L} - p_{L}(L - d_{L})]$ subject to $(IR_{L}) \quad EU_{L}[C_{L}] \ge EU_{L}[NI]$ $(IC_{L}) \quad EU_{L}[C_{L}] \ge EU_{L}[C_{H}]$ $(IC_{H}) \quad EU_{H}[C_{H}] \ge EU_{H}[C_{L}]$

 (IC_H) must be satisfied as an equality.

So C_H and C_L be on the same indifference curve for the H type.

On this indifference curve, contract C_H cannot be above contract

So it must be:

C_H must be a full insurance contract

(IR_L) must be satisfied as an equality.

(IC_L) is not binding: it is always satisfied as a strict inequality.

Page 10 of 10

Option 1 is a special case of Option 3

Option 3 yields higher profits than Option 2: $\pi_2^* < \pi_3^*$

In conclusion, the monopolist will always choose Option 3, although in some cases (namely when q_H is close to 1) the outcome is the same as in Option 1. EXAMPLE. $W = 1,600, x = 700, p_H = \frac{1}{5}, p_L = \frac{1}{10}, U(m) = \sqrt{m}$.

 h_{H}^{*} is given by the solution to

Thus under **Option 1** profits are:

Now **Option 3**. Let $h_H \in [79, 156]$ be the premium for the fullinsurance contract targeted to the *H* type To find c_L solve: We can solve the two equations in terms of h_{H} :

$$h_L(h_H) = h_H + 156\sqrt{1,600 - h_H} - 6,084$$
$$d_L(h_H) = 80h_H + 5,460\sqrt{1,600 - h_H} - 219,260$$

Then the monopolist will choose h_H to maximize

$$\pi_3 =$$

This function is strictly concave and $\frac{d\pi_3}{dh_H}\Big|_{h_h=79} = q_H N > 0$ and

 $\frac{d\pi_3}{dh_H}\Big|_{h_h=156} = \frac{47}{38}q_H - \frac{9}{38}$. This is negative if and only if $q_H < \frac{9}{47}$. Thus,

COMPETITIVE INDUSTRY with free entry

Equilibrium: (1) every firm makes zero profits and (2) no firm could make positive profits by introducing a new contract.

Three zero-profit lines:

Remark 1: there cannot be a single-contract equilibrium serving both types.

If there is a zero-profit equilibrium it must be an equilibrium with two contracts: the *L* types buy one and the *H* types buy the other

The contract bought by the H types must be a full-insurance contract:

What about the L contract?

