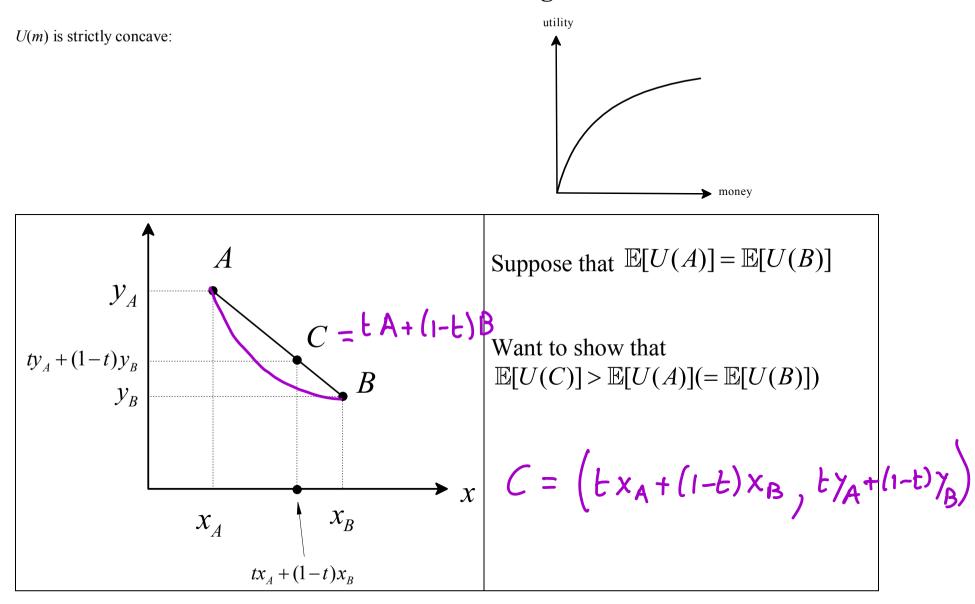
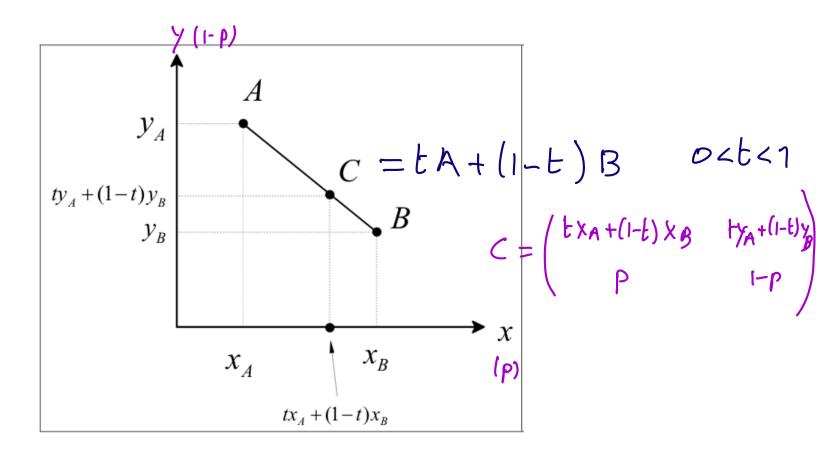


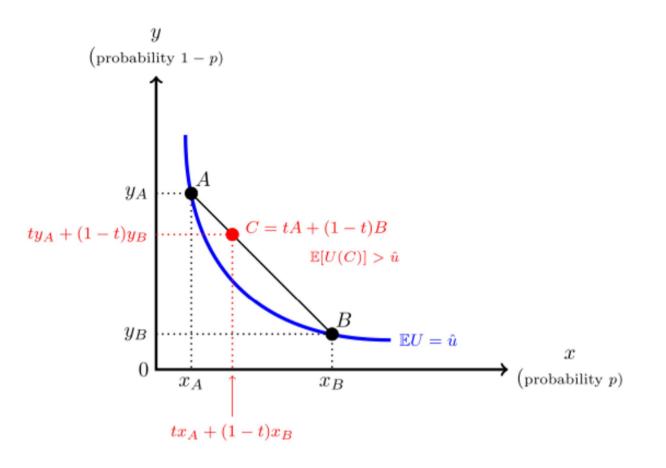
Case 2: risk-averse agent

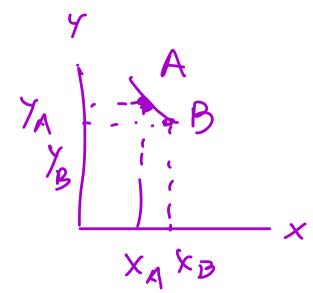




$$EEU(i) = P \underbrace{\bigcup_{k=1}^{V} \bigcup_{k=1}^{V} (1-i) \times_{B}}_{by \ couraw' by \ of \ U} \underbrace{\bigcup_{k=1}^{V} \bigcup_{k=1}^{V} \bigcup_{k=1}^{$$

= t E V(A) + (I-t) E V(A) = E V(A)





Page 6 of 13

Slope of indifference curve

Let *A* and *B* be two points that lie on the same indifference curve: $\mathbb{E}[U(A)] = \mathbb{E}[U(B)]$,

(*)

- Since x_B is close to x_A , $U(x_B) \simeq U(x_A) + U'(x_A) (\chi_B \chi_A)$
- Since y_B is close to y_A , $U(y_B) \simeq U(Y_A) + U'(Y_A)(Y_B Y_A)$

Thus the RHS of (*) can be written as

$$P \cup (x_{A}) + (1-p) \cup (y_{A}) = P \cup (x_{B}) + (1-p) \cup (y_{B}) \simeq$$

$$P \left[\bigcup (x_{A}) + \bigcup (x_{A}) (x_{B} - x_{A}) \right] +$$

$$(1-p) \left[\bigcup (y_{A}) + \bigcup (y_{A}) (y_{B} - y_{A}) \right]$$

$$= \left(P \bigcup (x_{A}) + (1-p) \cup (y_{A}) + (1-p) \cup (y_{A}) \right) +$$

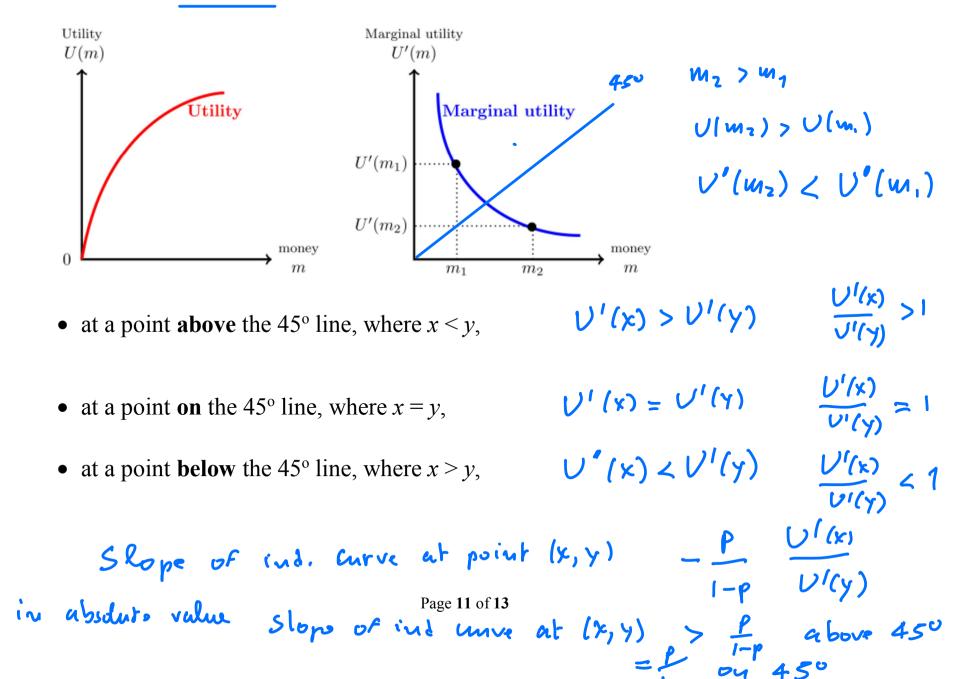
$$P \bigcup (x_{A}) + (x_{B} - x_{A}) + (1-p) \cup (y_{A}) (y_{B} - y_{A}) \right]$$

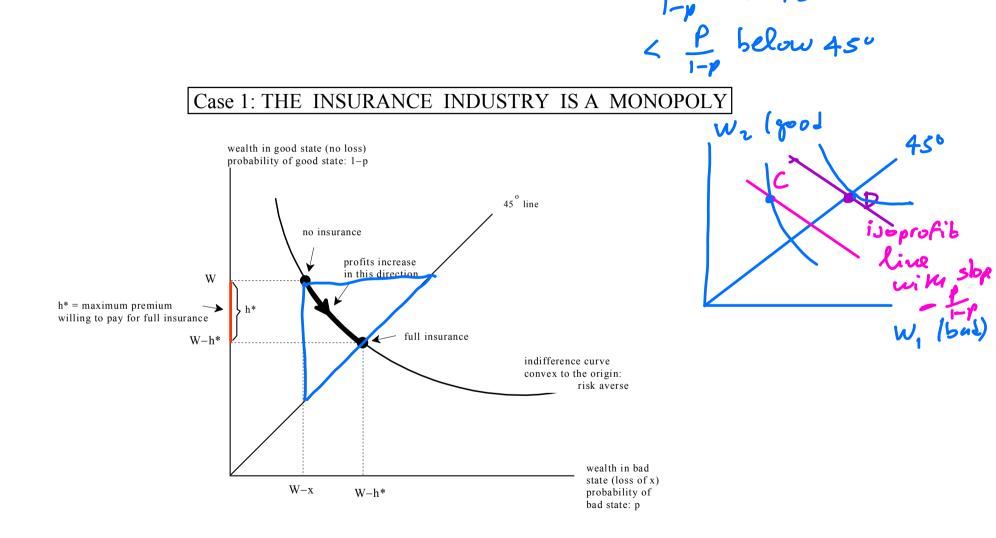
$$P = 10 \text{ of } 13 \qquad \begin{array}{c} y_{B} - y_{A} \\ y_{B} - y_{A} \end{array} = - \begin{array}{c} P \bigcup ((x_{A}) \\ y_{B} - y_{A}) \end{array}$$

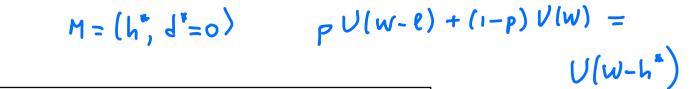
Slope of ind. curve through A at A

Comparing the slope at a point with the ratio

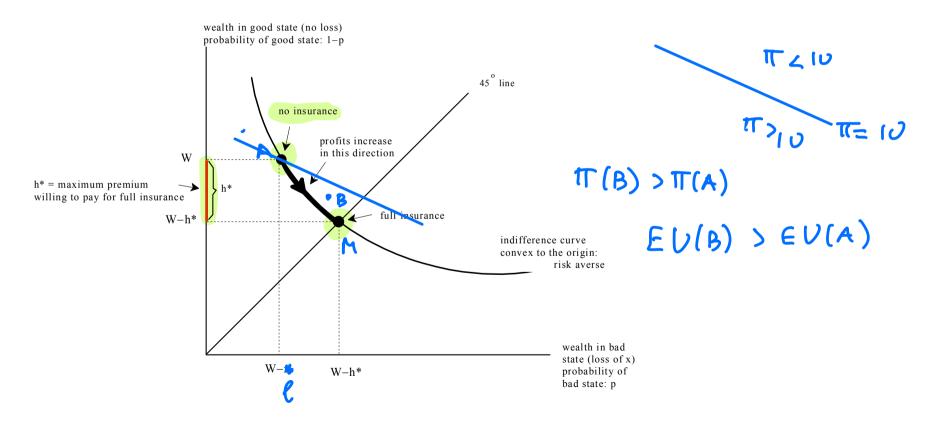
Look at the case of risk aversion but the other cases are similar.





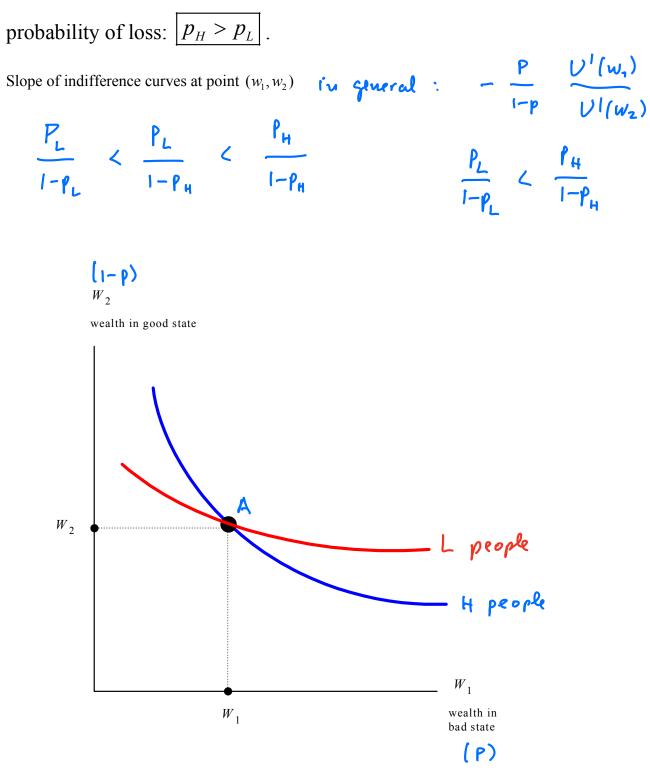


Case 1: THE INSURANCE INDUSTRY IS A MONOPOLY



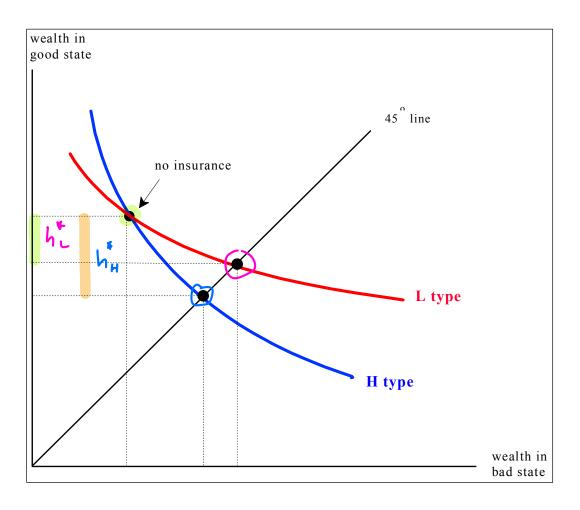
Adverse selection in insurance markets

Two types of customers, H and L, identical in terms of initial wealth W, potential loss L and vNM utility-of-money function U, but with different

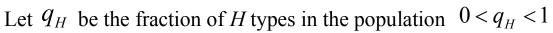


Page 1 of 10

 h_{H}^{*} maximum premium that the *H* people are willing to pay for full insurance h_{L}^{*} maximum premium that the *L* people are willing to pay for full insurance:

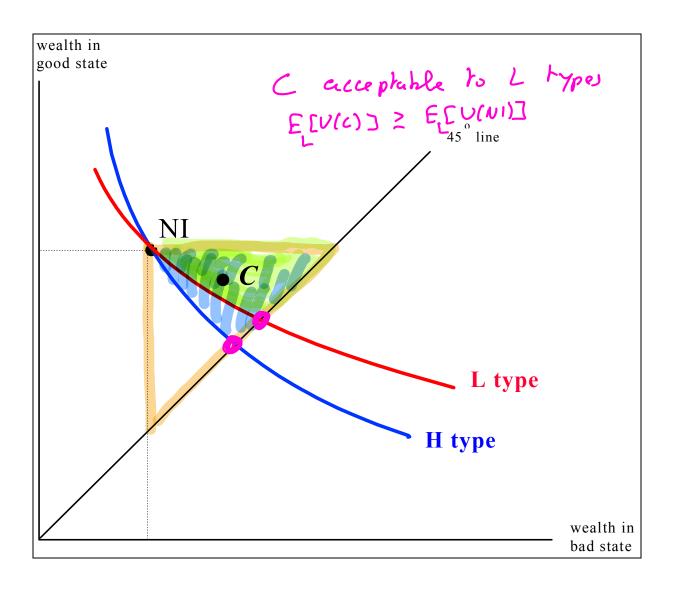


N = total number of potential austomers



$$N_{H} = number of H types = q_{H} N$$

 $N_{L} = " L " = (1-q_{H})N$

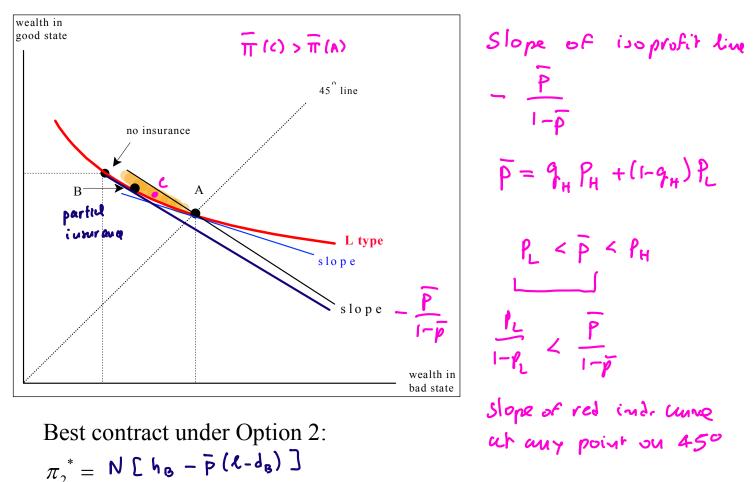


Case 1: MONOPOLY

OPTION 1. Offer only one contract, which is attractive only to the H type.

 $C_1 = (h_{\mu}^*, d=0) \qquad \text{Profits:} \quad \pi_1^* = \mathcal{P}_{\mu} \vee [h_{\mu}^* - P_{\mu}\ell]$

OPTION 2. Offer only one contract, which is attractive to both types. **Not optimal to offer full insurance**



OPTION 3: Offer two contracts,

 $C_H = (h_H, d_H)$, targeted to the *H* type $C_L = (h_L, d_L)$ targeted to the *L* type.

expected utility for L-type from C_L : $EU_L[C_L] = P_L \cup (W - h_L - d_L) + (1 - P_L) \cup (W - h_L)$ expected utility for L-type from C_H : $EU_L[C_H] = P_L \cup (W - h_H - d_H) + (1 - P_L) \cup (W - h_H)$ expected utility for H-type from C_L : $EU_H[C_L] = P_H \cup (W - h_L - d_L) + (1 - P_H) \cup (W - h_L)$ expected utility for H-type from C_H : $EU_H[C_H] = P_H \cup (W - h_H - d_H) + (1 - P_H) \cup (W - h_H)$ expected utility for L-type from NI: $EU_L[NI] = P_L \cup (W - e) + (1 - P_L) \cup (W)$ expected utility for L-type from NI: $EU_H[NI] = P_H \cup (W - e) + (1 - P_H) \cup (W)$ Monopolist's problem is to

IC = incentive competibility $Max \ \pi_3 = q_H N [h_H - p_H (\ell - d_H)] + (1 - q_H) N [h_L - p_L (\ell - d_L)]$ $(IR_{L}) \qquad EV_{L}(C_{L}) \geq EU_{L}(NI) \qquad C_{L} \text{ is acceptable to } L \Rightarrow C_{L} \text{ is acceptable to } L \Rightarrow C_{L} \text{ is accept}$ $(IC_{L}) \qquad EU_{L}[C_{L}] \geq EU_{L}[C_{H}]$ acceptable to H $(IR_{H}) = EU_{H}[C_{H}] \ge EU_{H}[NI]$ $(IC_{H}) = EU_{H}[C_{H}] \ge EU_{H}[C_{L}] \ge EU_{H}[C_{L}]$

IR = individual rationality

 (IR_{H}) follows from (IR_{L}) and (IC_{H})

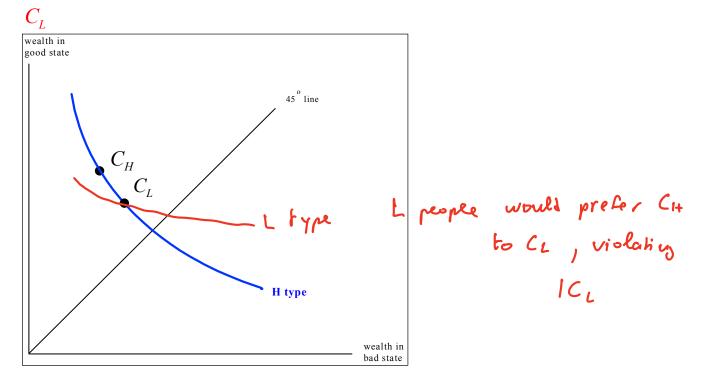
Thus, the problem can be reduced to

in hu $Max_{h_{H}, d_{L}, h_{L}, d_{L}} \pi_{3} = q_{H}N[h_{H} - p_{H}(L - d_{H})] + (1 - q_{H})N[h_{L} - p_{L}(L - d_{L})]$ subject to $(IR_L) EU_L[C_L] \ge EU_L[NI] \text{ in Lependent or has}$ $(IC_L) EU_L[C_L] \ge EU_L[C_H] \text{ decreases with has}$ $(IC_H) EU_L[C_L] \ge EU_L[C_H] \text{ decreases with has}$ $(IC_H) \quad EU_H[C_H] \ge EU_H[C_L] \qquad \qquad Suppose C_H \quad aud C_L \quad and \quad buch$ independent U_{L} U_{L} replace with = H people are indifferent between C₁₄ and C_L

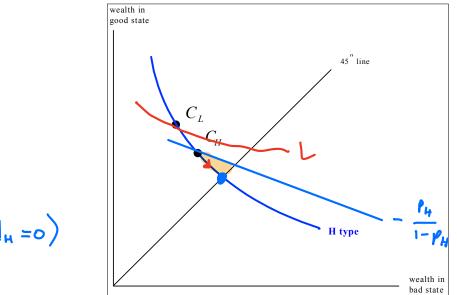
The is increasing

So C_H and C_L be on the same indifference curve for the H type.

On this indifference curve, contract C_H cannot be above contract

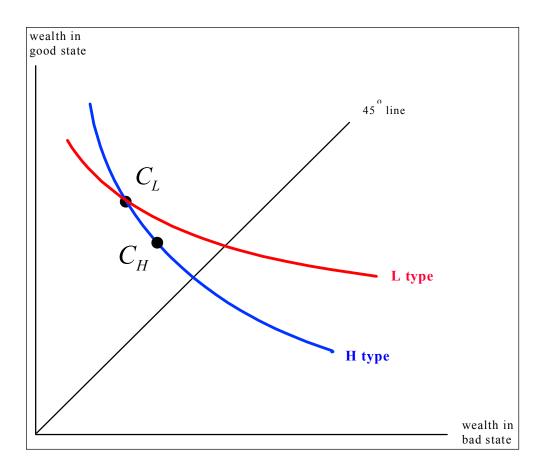


So it must be:

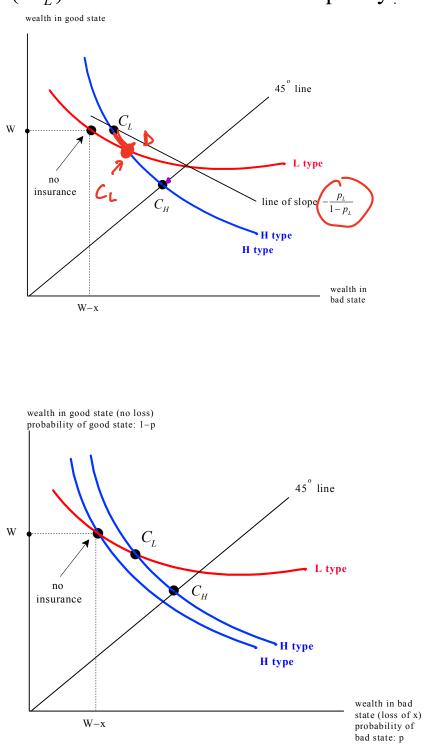


$$C_{H} = (h_{H}, d_{H} = 0)$$

C_{H} must be a full insurance contract



(IR_L) must be satisfied as an equality.



(IC_L) is not binding: it is always satisfied as a strict inequality.

Page 10 of 10