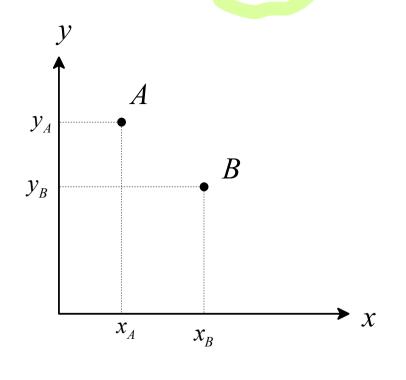
Wo-(Wo-Uh)

BINARY LOTTERIES

Lotteries of the form $\binom{\$x \quad \$y}{p \quad 1-p}$ with p fixed and x and y allowed to vary.



draw indifference curve

through A

Risk averse if

We want to draw indifference curves in this diagram

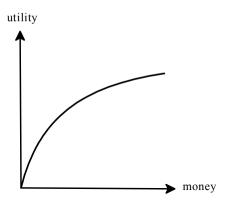
$$U(t_{m_1} + (1-t)_{m_2}) > t_{U(m_1) + (1-t)U(m_2)}$$

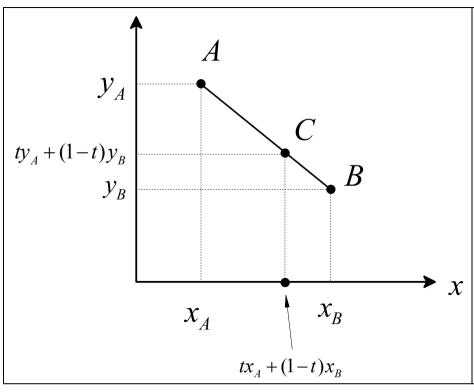
$$E[L]$$
 $L=\begin{pmatrix} w_1 & w_2^{\text{Page 1 of 13}} \\ t & l-t \end{pmatrix}$

$$U(u_1)$$
 $U(u_1)$
 $U(u_2)$
 $U(u_1)$
 $U(u_2)$
 U

Case 2: risk-averse agent

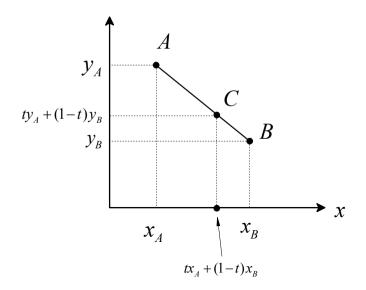
U(m) is strictly concave:





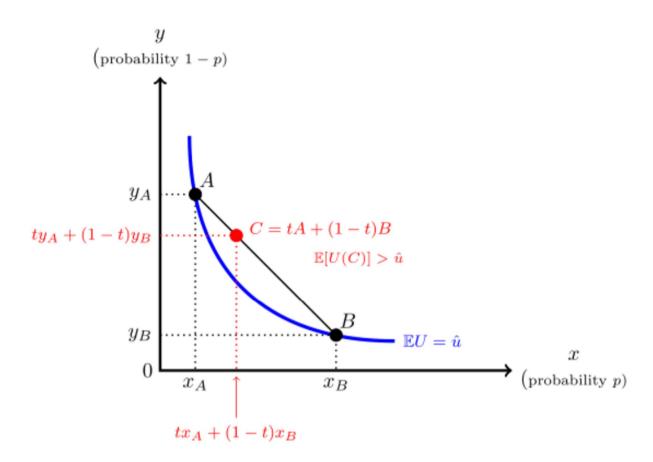
Suppose that $\mathbb{E}[U(A)] = \mathbb{E}[U(B)]$

Want to show that $\mathbb{E}[U(C)] > \mathbb{E}[U(A)] (= \mathbb{E}[U(B)])$



$$\mathbb{E}[U(C)] =$$

The indifference curve must lie below the straight-line segment joining A and B.



Slope of indifference curve

Let A and B be two points that lie on the same indifference curve: $\mathbb{E}[U(A)] = \mathbb{E}[U(B)]$,

(*)

- Since x_B is close to x_A , $U(x_B) \simeq$
- Since y_B is close to y_A , $U(y_B) \simeq$

Thus the RHS of (*) can be written as

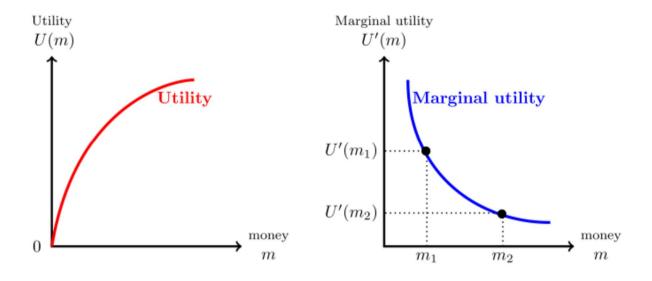
So (*) becomes

that is,

which can be written as

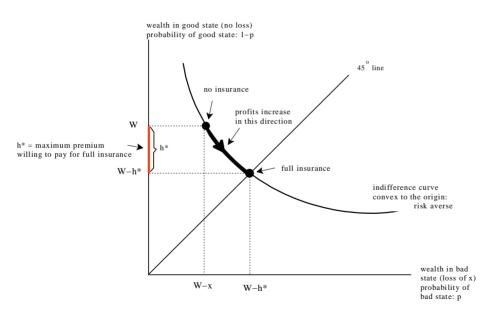
Comparing the slope at a point with the ratio $\frac{p}{1-p}$

Look at the case of risk aversion but the other cases are similar.



- at a point **above** the 45° line, where x < y,
- at a point on the 45° line, where x = y,
- at a point **below** the 45° line, where x > y,

Case 1: THE INSURANCE INDUSTRY IS A MONOPOLY



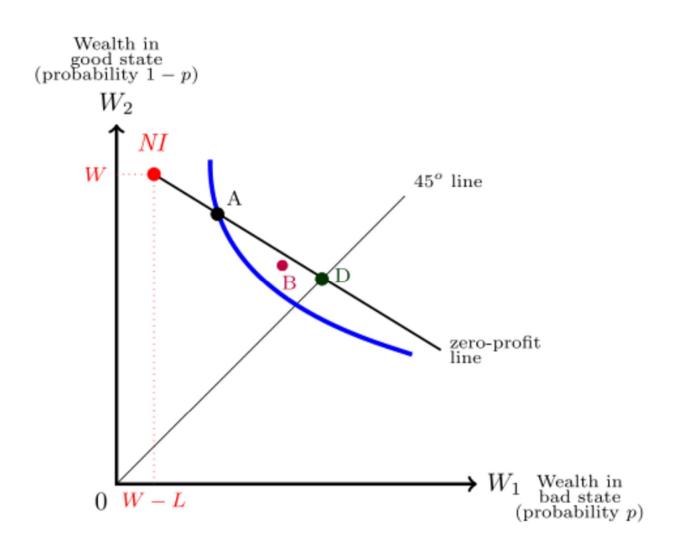
2. Suppose the insurance industry is perfectly competitive

A contract that yields zero profit is called a **fair contract** and the zero profit line is called the **fair odds line**. Recall that the zero profit line is the straight line that goes through the No Insurance point and has slope $-\frac{p}{1-p}$.

Define an equilibrium in a competitive insurance industry as a situation where

- (1) every firm makes zero profits and
- (2) no firm (existing or new) can make positive profits by offering a new contract.

By the zero-profit condition (1), any equilibrium contract must be on the zero-profit line.

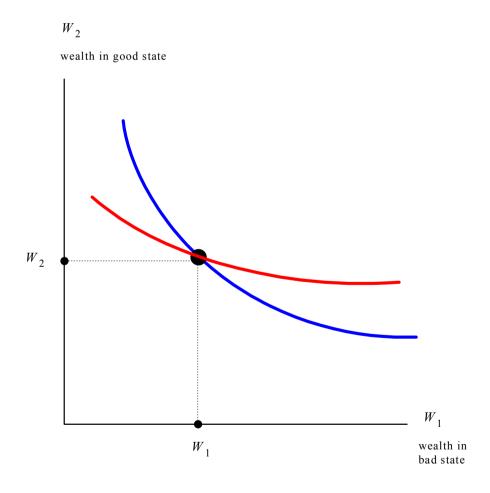


$$d_D = 0$$
 and $h_D =$

Adverse selection in insurance markets

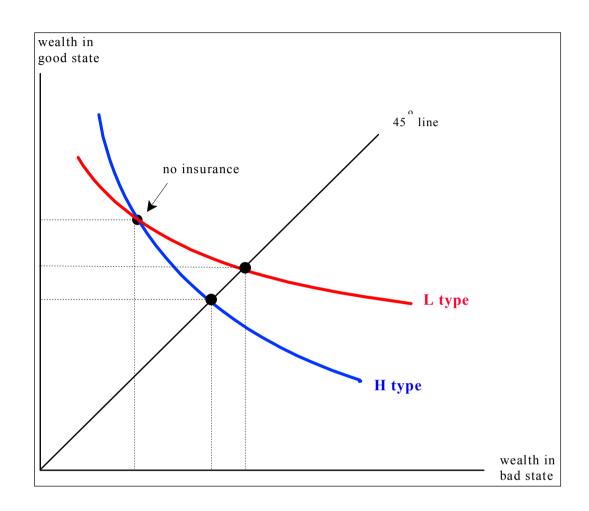
Two types of customers, H and L, identical in terms of initial wealth W, potential loss L and vNM utility-of-money function U, but with different probability of loss: $\boxed{p_H > p_L}$.

Slope of indifference curves at point (w_1, w_2)



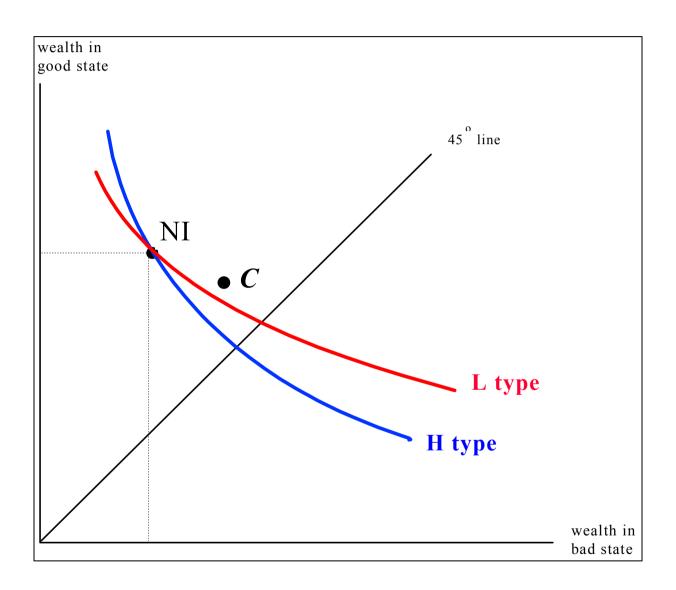
Page 1 of 10

 h_H^* maximum premium that the H people are willing to pay for full insurance h_L^* maximum premium that the L people are willing to pay for full insurance:



Let q_H be the fraction of H types in the population $0 < q_H < 1$

If $\mathbb{E}[U_L(C)] \ge \mathbb{E}[U_L(NI)]$ then $\mathbb{E}[U_H(C)] \ge \mathbb{E}[U_H(NI)]$

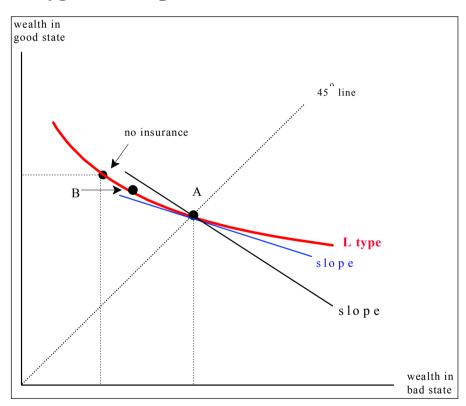


Case 1: MONOPOLY

OPTION 1. Offer only one contract, which is attractive only to the H type.

$$C_1 = ($$
, $)$ Profits: $\pi_1^* =$

OPTION 2. Offer only one contract, which is attractive to both types. **Not optimal to offer full insurance**



Best contract under Option 2:

$$\pi_{2}^{*} =$$

OPTION 3: Offer two contracts,

$$C_H = (h_H, d_H)$$
, targeted to the H type $C_L = (h_L, d_L)$ targeted to the L type.

expected utility for L-type from C_L : $EU_L[C_L] =$ expected utility for L-type from C_H : $EU_L[C_H] =$ expected utility for H-type from C_L : $EU_H[C_L] =$ expected utility for H-type from C_H : $EU_H[C_H] =$ expected utility for L-type from NI: $EU_L[NI] =$ expected utility for L-type from NI: $EU_L[NI] =$

Monopolist's problem is to

$$\begin{split} & \underbrace{M}_{h_H,d_H,h_L,d_L} \pi_3 = q_H N \big[h_H - p_H (L - d_H) \big] + (1 - q_H) N \big[h_L - p_L (L - d_L) \big] \\ & \text{subject to} \\ & \underbrace{(IR_L)}_{(IC_L)} \\ & \underbrace{(IR_H)}_{(IC_H)} \end{split}$$

 (IR_H) follows from (IR_L) and (IC_H)

Thus, the problem can be reduced to

$$\underbrace{M_{ax}}_{h_{H},d_{H},h_{L},d_{L}} \pi_{3} = q_{H}N[h_{H} - p_{H}(L - d_{H})] + (1 - q_{H})N[h_{L} - p_{L}(L - d_{L})]$$
subject to

$$(IR_L)$$
 $EU_L[C_L] \ge EU_L[NI]$

$$(IC_L)$$
 $EU_L[C_L] \ge EU_L[C_H]$

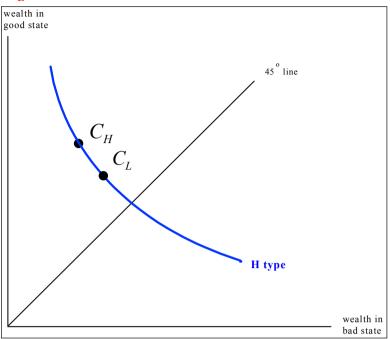
$$(IC_H)$$
 $EU_H[C_H] \ge EU_H[C_L]$

 (IC_H) must be satisfied as an equality

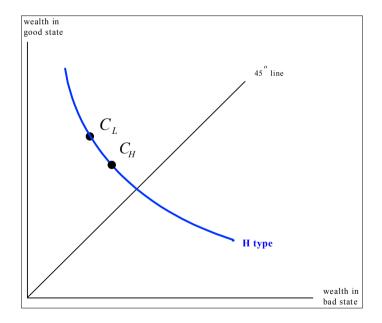
So C_H and C_L be on the same indifference curve for the H type.

On this indifference curve, contract C_H cannot be above contract

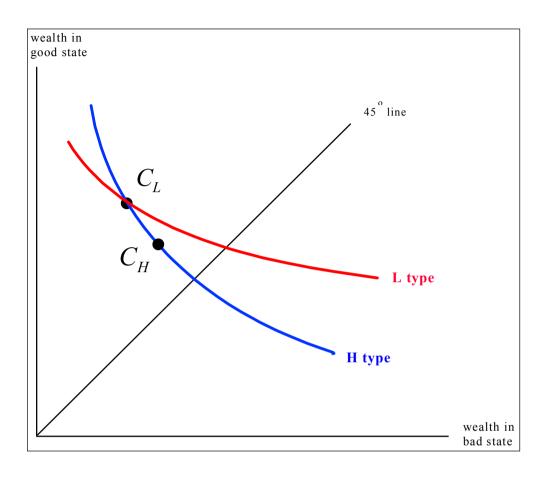
 C_L



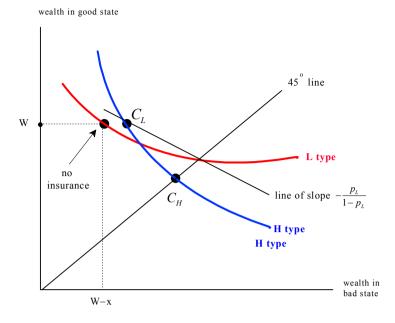
So it must be:

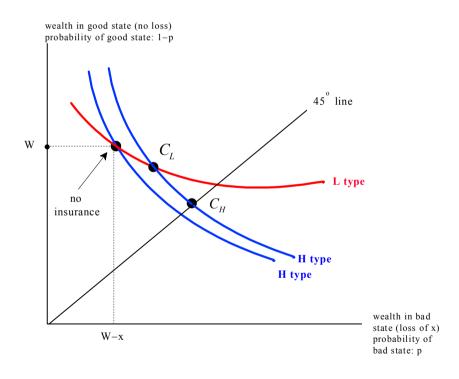


C_H must be a full insurance contract



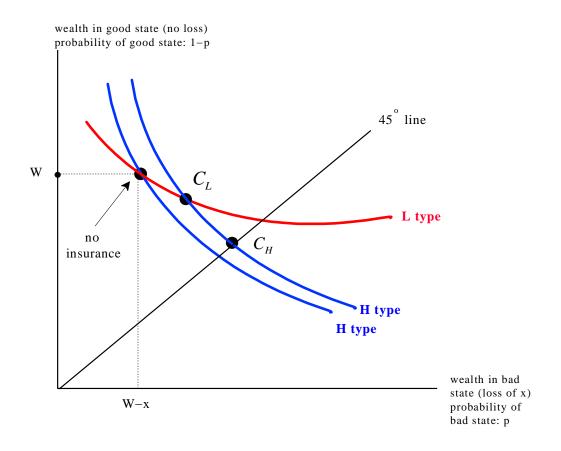
(IR_L) must be satisfied as an equality.



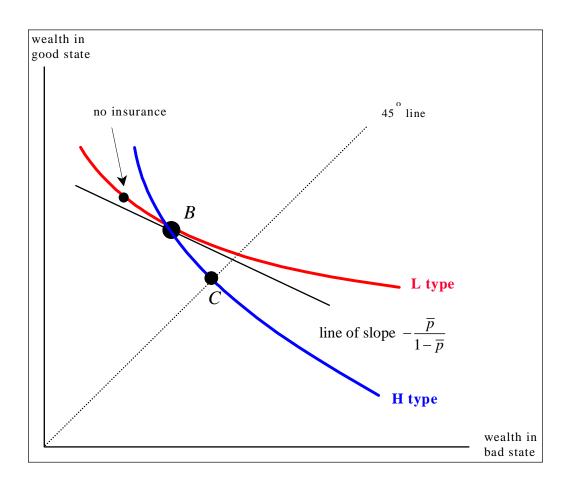


 (IC_L) is not binding: it is always satisfied as a strict inequality.

Option 1 is a special case of Option 3



Option 3 yields higher profits than Option 2: $\pi_2^* < \pi_3^*$



In conclusion, the monopolist will always choose Option 3, although in some cases (namely when q_H is close to 1) the outcome is the same as in Option 1.

EXAMPLE.
$$W = 1,600, x = 700, p_H = \frac{1}{5}, p_L = \frac{1}{10}, U(m) = \sqrt{m}$$
.

 h_H^* is given by the solution to

Thus under **Option 1** profits are:

Now **Option 3**. Let $h_H \in [79, 156]$ be the premium for the full-insurance contract targeted to the H type. To find C_L solve:

We can solve the two equations in terms of h_H :

$$h_L(h_H) = h_H + 156\sqrt{1,600 - h_H} - 6,084$$

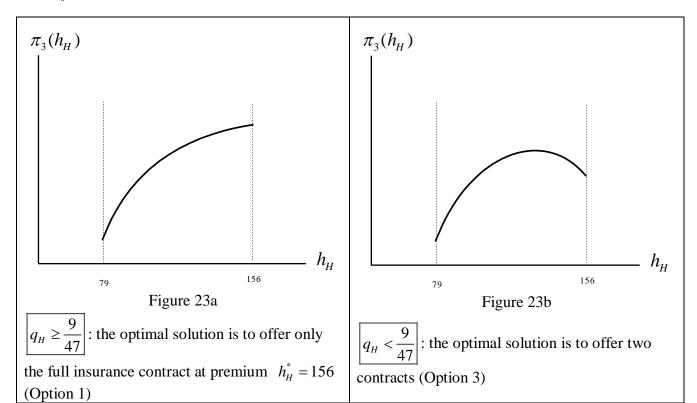
 $d_L(h_H) = 80h_H + 5,460\sqrt{1,600 - h_H} - 219,260$

Then the monopolist will choose h_H to maximize

$$\pi_3 =$$

This function is strictly concave and $\frac{d\pi_3}{dh_H}\Big|_{h_h=79} = q_H N > 0$ and

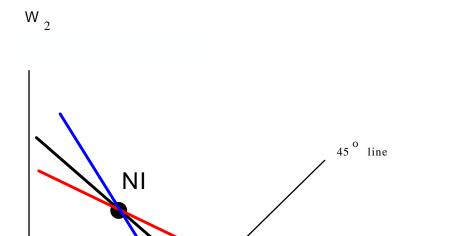
 $\frac{d\pi_3}{dh_H}\Big|_{h_h=156} = \frac{47}{38}q_H - \frac{9}{38}$. This is negative if and only if $q_H < \frac{9}{47}$. Thus,



COMPETITIVE INDUSTRY with free entry

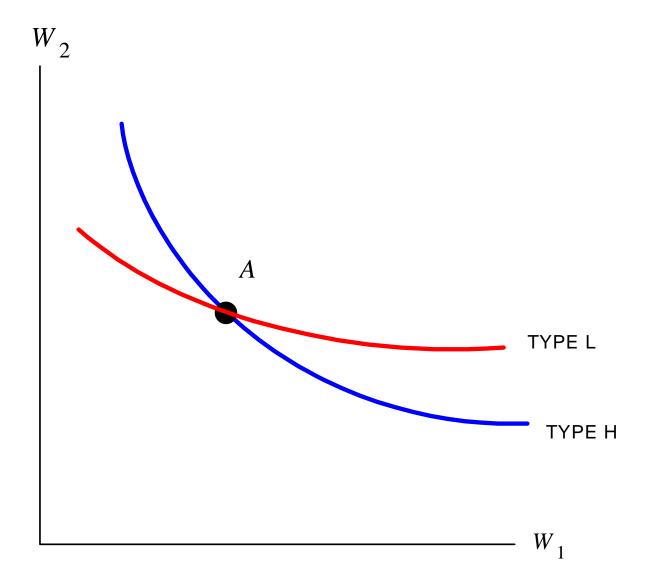
Equilibrium: (1) every firm makes zero profits and (2) no firm could make positive profits by introducing a new contract.

Three zero-profit lines:



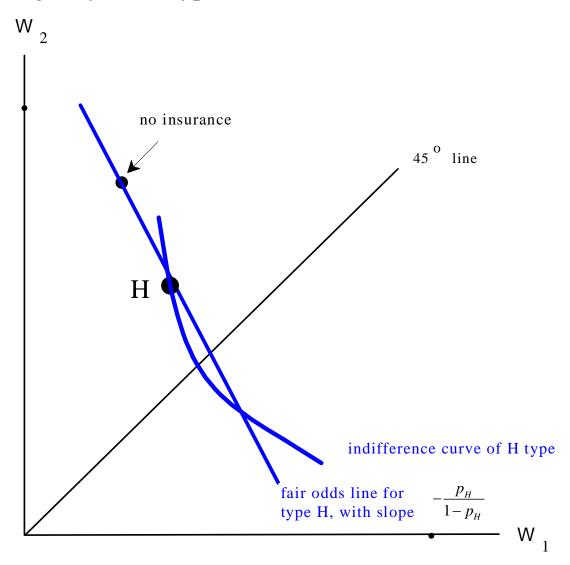
Remark 1: there cannot be a single-contract equilibrium serving both types.

 W_1

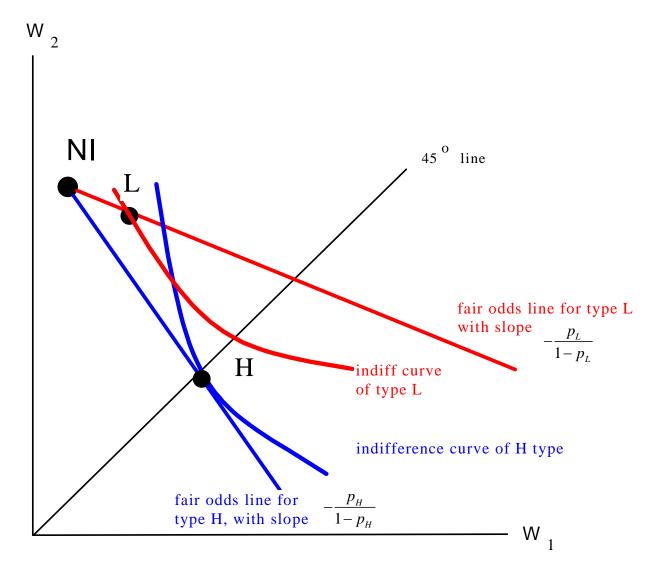


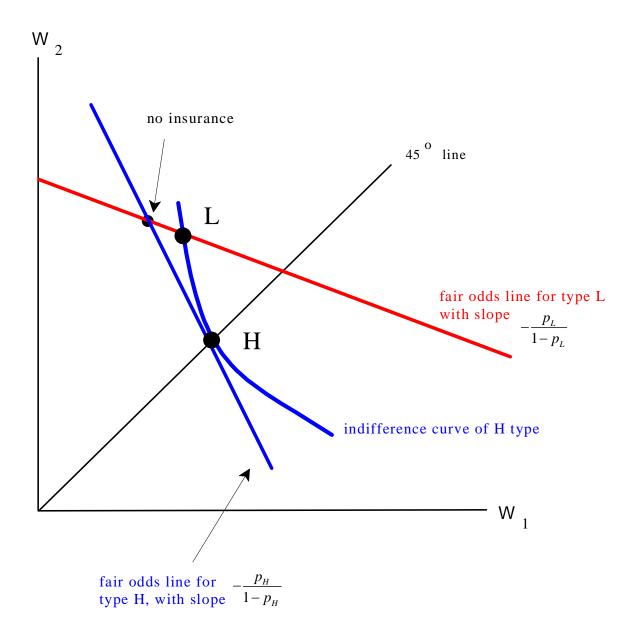
If there is a zero-profit equilibrium it must be an equilibrium with two contracts: the L types buy one and the H types buy the other

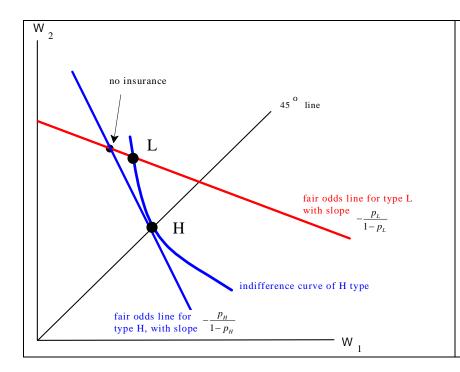
The contract bought by the H types must be a full-insurance contract:



What about the L contract?







Example:

$$W = 625, \ loss = 225,$$

$$U(\$m) = \sqrt{m},$$

$$p_H = \frac{1}{10}, \ p_L = \frac{1}{20},$$

