Example of a signaling equilibrium when education does increase productivity

HB = 1 $Type L: \begin{cases} productivity: \underline{4+e} \\ cost: C_{L}(e) = \underline{4e} \\ Hc = 4 \end{cases}$ $Type H: \begin{cases} productivity: \underline{8+e} \\ cost: C_{H}(e) = \underline{2e} \end{cases}$ $HC = 2 \\ HC = 2$

For a signaling equilibrium we need:

for Type L: e=0 beller than $e=e^*$ $4 > 8+e^* - 4e^*$ $e^* > \frac{4}{3}$

for Type H: e=e* helter Man e=0

 $8 + e^* - 2e^* > 4$ $e^* < 4$

any $\frac{4}{3} < e^{4} < 4$ gives a signaling equilibrium

Suppose that 50% of the population is Type *L* and 50% is Type *H*. Consider a signaling equilibrium with $e^* = 3$.

Then Type *L* have a net wage of **4**

Type *H* a net wage of $8+3-2\times3=5$

Force everybody to choose e = 0 and force employers to pay everybody w = average productivity: $\frac{1}{2} 4 + \frac{1}{2} 8 = 6$

An example with three types

y =0

 $\gamma = \gamma_{i}$

Y = 7,

Type A: productivity 10, $\cot C_A(y) = ay$ Type B: productivity 15, $\cot C_B(y) = by$ Type C: productivity 20, $\cot C_C(y) = cy$

$$0 < c < b < a$$

$$Wage offer: \begin{cases} 10 & \text{if } y < y_1 \\ 15 & \text{if } y_1 \le y < y_2 \\ 20 & \text{if } y_2 \le y \end{cases}$$

For a separating signaling equilibrium we need:

Type A to choose y=0 10 > 15 - ay_1 10 > 20 - ay_2 Type B to choose $y=y_1$ 15 - by_1 > 10 15 - by_1 > 20 - by_2 Type C to choose $y=y_2$ 20 - cy_2 > 10 20 - cy_2 > 15 - cy_1 if $y_1=5$, $y_2=12$, a=2, $b=\frac{3}{4}$, $c=\frac{1}{4}$ all six inequalities are satisfied **Psychological costs of education**

Captures different "Cost of education"

Productivity of Type H: *He*

Productivity of Type L: Le 0 < L < H

First-best clusices when employer can rell types apart.

Relative to First hest H types over-speud on education

Adverse Selection

You have just opened an all-you-can-eat buffet restaurant. The capacity of your restaurant is K = 100. Not quite sure how much you can charge. It costs \$2 to provide one standard-size serving of food. You are risk neutral.

I <i>O</i>								
Day	Price	More than 50 people show up (= excess demand)?	Total profits					
1	\$6	Yes	\$150					
2	\$6.50	Yes	\$160					
3	\$7	Yes	\$104					

What happened? Revenue:

price	revenue
\$6	$(6 \times 100) = 600$
\$6.50	\$(6.50×100) = \$650
\$7	$(7 \times 100) = $

Customer type	(6,1)	(6,1.5)	(6.50,1.5)	(6.50, 2.2)	(7,2.2)	(7,3.5)	
Fraction	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{3}{12}$	Calt new
• If you charge \$	6:						dioh = \$2
consumptio	on 1		1.5	2.2	2	3.5	
probability	y <u> </u> [2		3	5		3 12	
Expected cost	<u> </u> 12	- 2 -	+ 3/12 3	+ 5 (2	4.4)	+ 3/12	7
 If you charge \$ Customer type \$ Fraction 	6.50: ☞€	jekz X	$ \begin{array}{c} 2 \\ 10 \\ (6.50,1) \\ \frac{2}{12} \end{array} $.5) (6.50, $\frac{3}{12}$	2.2) (7	$\frac{2}{10}$ (7,2.2) (7) $\frac{2}{12}$	$\frac{3}{10}$ 7,3.5) $\frac{3}{12}$
consum probab	ption oility	1 D	1.5	2	2.2	3.5	
Repected 10,	ł		2 10	+ 5/10	(4 .4)	$+\frac{3}{10}$	7

N = 1,200 potential customers. Each can be described by a pair (r,c) where r is the reservation price and c is the amount of food he/she consumes.

• If you charge \$7:	2 5	<u>3</u> 5
Customer type $0,1$ $0,15$ $0,15$ $0,59,22$ Fraction $\cancel{1}$ $\cancel{1}$ $\cancel{1}$ $\cancel{1}$	(7, 2.2) $\frac{2}{12}$	(7,3.5) $\frac{3}{12}$
consumption11.52.2probability02	3.5 <u>3</u> 5	
$\begin{array}{ccc} \text{Expected cost} : & \frac{2}{5} & (4.4) + \frac{3}{5} \\ \end{array}$	5	

Akerlof: market for second-hand cars

Quality	A	В	С	D	Ε	F	
Number of cars	10	20	10	40	30	10	Total: 120
fraction	$p_A = \frac{10}{120} = \frac{1}{12}$	$p_{B} = \frac{2}{12}$	$p_C = \frac{1}{12}$	$p_D = \frac{4}{12}$	$p_E = \frac{3}{12}$	$p_F = \frac{1}{12}$	
Buyer's value	\$6,000	\$5,000	\$4,000	\$3,000	\$2,000	\$1,000	
Seller's value	\$5,400	\$4,500	\$3,600	\$2,700	\$1,800	\$900	

one price P if P=4,200 haive buyer

	6000-P	5000 - P	4000-P	3000-1	2000-p	1000-0	
L=	12	2	$\frac{1}{12}$	4	3	<u> </u> 2 /)
		12	. 2	12	' 2	16	

1

и	6000	5000	4000	3000	2000	000
F1 =	1 12	2/2		4[2	3(2	$\frac{1}{12}$

E[L] = E[M] - Pif E[M]>P I should bony