Example of a signaling equilibrium when education does increase productivity

For a signaling equilibrium we need:

for Type *L*:

for Type *H*:

Suppose that 50% of the population is Type *L* and 50% is Type *H*. Consider a signaling equilibrium with $e^* = 3$.

Then Type *L* have a net wage of

Type *H* a net wage of

Force everybody to choose e = 0 and force employers to pay everybody w = average productivity:

An example with three types

Type A: productivity 10, cost $C_A(y) = ay$

Type B: productivity 15, cost $C_B(y) = by$

Type C: productivity 20, cost $C_C(y) = cy$

$$0 < c < b < a$$

$$Wage offer: \begin{cases} 10 & \text{if } y < y_1 \\ 15 & \text{if } y_1 \le y < y_2 \\ 20 & \text{if } y_2 \le y \end{cases}$$

For a separating signaling equilibrium we need:

Type A to choose

Type B to choose

Type C to choose

Necessary conditions for Type A:

Necessary conditions for Type B:

Necessary conditions for Type C:

Psychological costs of education

U(m,e)

Productivity of Type H: He

Productivity of Type L: Le0 < L < H

When types can be identified

Asymmetric information

When $e_L < e^* < e_H$ and e^* close to e_H possible to have efficiency:

Adverse Selection

You have just opened an all-you-can-eat buffet restaurant. The capacity of your restaurant is K = 100. Not quite sure how much you can charge. It costs \$2 to provide one standard-size serving of food. You are risk neutral.

Day	Price	More than 50 people show up (= excess demand)?	Total profits
1	\$6	Yes	\$150
2	\$6.50	Yes	\$160
3	\$7	Yes	\$104

What happened? Revenue:

price	revenue
\$6	$(6 \times 100) = 600$
\$6.50	\$(6.50×100) = \$650
\$7	$(7 \times 100) = $

N = 1,200 potential customers. Each can be described by a pair (r,c) where *r* is the reservation price and *c* is the amount of food he/she consumes.

Customer type	(6,1)	(6,1.5)	(6.50,1.5)	(6.50, 2.2)	(7,2.2)	(7,3.5)
Number	100	100	200	300	200	300
Fraction	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{3}{12}$
 If you charge \$ consumption probability 	6: on 1		1.5	2.2	2	3.5

• If you charge \$6.50:

Customer type) (),,()	(6, 1 ,5)	(6.50,1.5)	(6.50, 2.2)	(7,2.2)	(7,3.5)
Fraction	X	X	$\frac{2}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{3}{12}$
consu	mption	1	1.5	2.2	3	8.5
proba	ability					

•	If you charge	\$7:					
	Customer type Fraction)6,45) X	(6 .50,1 .5)	(6 .50 ,2.2)	(7, 2.2)	$(7, 3.5)$ $\frac{3}{12}$
	consun proba	nption bility	1	1.5	2.2	3.5	

Quality	A	В	С	D	Ε	F	
Number of cars	10	20	10	40	30	10	Total: 120
fraction	$p_A = \frac{10}{120} = \frac{1}{12}$	$p_B = \frac{2}{12}$	$p_C = \frac{1}{12}$	$p_D = \frac{4}{12}$	$p_E = \frac{3}{12}$	$p_F = \frac{1}{12}$	
Buyer's value	\$6,000	\$5,000	\$4,000	\$3,000	\$2,000	\$1,000	
Seller's value	\$5,400	\$4,500	\$3,600	\$2,700	\$1,800	\$900	

Akerlof: market for second-hand cars

ADVERSE SELECTION Akerlof on market for second-hand cars

Utility-of-money of a potential seller who owns of a car of quality *q*:

 $U(m) = \begin{cases} m + u(q) & \text{if does not sell the car} \\ m & \text{if sells the car} \end{cases}$

Thus, if her initial wealth is W_0 she will sell the car a price p only if:

Utility-of-money of a potential buyer who does not own a car:

 $V(m) = \begin{cases} m & \text{if does not buy a car} \\ m + v(q) & \text{if becomes owner of a car of quality } q \end{cases}$

Thus, if his initial wealth is W_0 he will but a car of quality q at price p only if:

Assume that, for every quality q, v(q) > u(q) > 0

What if there is **asymmetric information**: only the owner knows the quality q?

Quality q	best: A	В	С	D	Ε	worst: F	
Number of cars	120	200	100	240	320	140	Total: 1,120
Proportion							
v(q) (seller)	720	630	540	450	360	270	
u(q) (buyer)	800	700	600	500	400	300	

Publicly available information:

Buyer: if a car is offered to me at price *p* should I buy it?

Suppose p = 460

Quality q	best: A	В	С	D	Ε	worst: F
v(q) (seller)	720	630	540	450	360	270

Back to previous example. Suppose that p = 460. Then only qualities D, E, F offered

Step 1: convert	probabilities to	a common	denominator:
-----------------	------------------	----------	--------------

Quality q	best: A	В	С	D	Ε	worst: F
Proportion	$p_A = \frac{3}{28}$	$p_B = \frac{5}{28}$	$p_C = \frac{5}{56}$	$p_D = \frac{3}{14}$	$p_E = \frac{2}{7}$	$p_F = \frac{1}{8}$

Step 2: condition on {D, E, F}

Quality q	best: A	В	С	D	Ε	worst: F
Proportion						

Suppose p = 380

Quality q	best: A	В	С	D	Ε	worst: F
v(q) (seller)	720	630	540	450	360	270