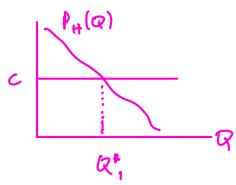
BUNDLING

OPTION 1. Offer only one type of package (Q,V) which will be bought only by type H, because $V > W_L(Q)$ but $V \le W_H(Q)$.

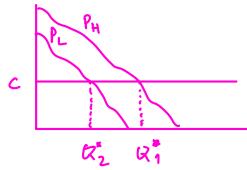
Profit-maximizing bundle has Q_1^* as the solution to $P_H(Q) = c$ and

$$V_1^* = W_H(Q_1^*)$$



OPTION 2. Offer only one package (Q,V) which will be bought by both types, because $V \le W_L(Q)$ (which implies that $V < W_H(Q)$ since $W_L(Q) < W_H(Q)$ when Q > 0).

Profit-maximizing bundle has Q_2^* as the solution to $P_L(Q)=c$ and $V_2^*=W_L(Q_2^*)$



OPTION . Offer two packages: (Q_H, V_H) targeted to the high type and (Q_L, V_L) targeted to the low type. Constraints:

$$(IR_L) V_L \leq W_L(Q_L)$$

$$(IC_L) W_L(Q_L) - V_L \ge W_L(Q_H) - V_H$$

$$-(IR_H)V_H \leq W_H(Q_H)$$

$$(IC_H) W_H(Q_H) - V_H \ge W_H(Q_L) - V_L$$

Observation 1: (IR_H) is redundant.

Observation 2: (IC_H) must be satisfied as an equality. Thus

$$V_{H} = W_{H}(Q_{H}) - W_{H}(Q_{L}) + V_{L}$$

$$Q_{L}$$

Replacing this in (IC_L) and simplifying, we get that (IC_L) is satisfied if

$$W_H(Q_H) - W_H(Q_L) \ge W_L(Q_H) - W_L(Q_L)$$
 which is true if $Q_H \ge Q_L$

Strategy: solve maximization problem without (IC_L) and then check if the solution is such that $Q_H \ge Q_L$

$$\begin{aligned} \text{Max} & \Pi = Q_H \, \mathcal{N} \left[\, W_H(Q_H) - W_H(Q_L) + V_L \, - C Q_H \, \right] \\ V_{L_1} Q_{L_2} Q_H & & + \left(1 - Q_H \right) \, \mathcal{N} \left[\, V_L \, - C \, Q_L \, \right] & \Pi \, \text{increasing} \\ \text{S.f.} & \left(1 R_L \right) \quad V_L \leq W_L(Q_L) & \Rightarrow V_L = W_L(Q_L) \end{aligned}$$

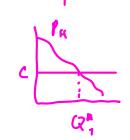
$$M_{ax} \qquad \Pi = q_{H} N \left[W_{H}(q_{H}) - W_{H}(q_{L}) + W_{L}(q_{L}) - c Q_{H} \right]$$

$$V_{L_{1}} Q_{L_{3}} Q_{H} \qquad + (1 - q_{H}) N \left[W_{L}(Q_{L}) - c Q_{L} \right]$$

$$\frac{\partial \pi}{\partial Q_{H}} = Q_{H} N \left[P_{H}(Q_{H}) - C \right] = 0 \implies P_{H}(Q_{H}) = C$$

$$Q_{H}^{*} = Q_{*}^{*}$$

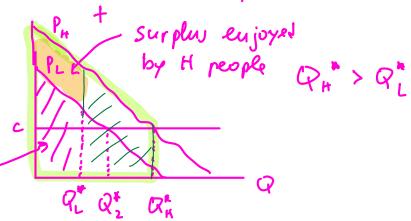
$$\frac{\partial T}{\partial Q_{L}} = Q_{H} N \left[-P_{H} (Q_{L}) + P_{L} (Q_{L}) \right] + \left[(1-Q_{H}) N \left[P_{L} (Q_{L}) - C \right] = 0$$



$$(1-q_{H}) P_{L}(Q_{L}) = (1-q_{H}) c + q_{H}[P_{H}(Q_{L}) - P_{L}(Q_{L})]$$

divide by $(1-q_{H})$

$$P_{L}(Q_{L}) = C + \left(\frac{q_{H}}{1-q_{H}}\right) \left[P_{H}(Q_{L}) - P_{L}(Q_{L})\right] > C$$



$$V_{H}^{\bullet} = W_{H}(Q_{H}^{\bullet}) - W_{H}(Q_{L}^{\bullet}) + N W_{L}(Q_{L}^{\bullet})$$

Option 2: never optimal

profit

H's willinguess

to pay for
$$(V_L, Q_L) = (W_L(Q_2, Q_2))$$

no extra

quantity

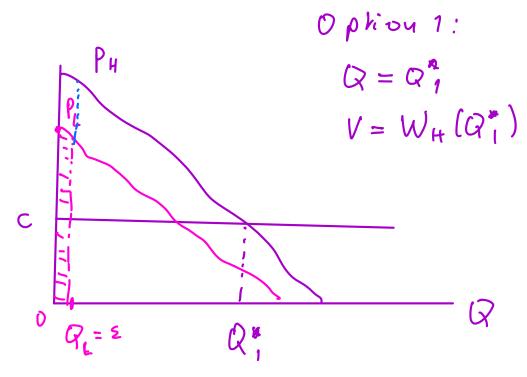
 $Q_1^* - Q_2^*$ add new package

 $(V_H, Q_R) = (V_L, Q_L) = (V_L(Q_2, Q_2))$
 $(V_H, Q_R) = (V_H, Q_R)$

$$V_{H} = W_{L}(Q_{2}^{\bullet}) + A \qquad C < A < \int_{Q_{1}^{\bullet}}^{Q_{1}^{\bullet}} |P_{H}(x)|^{2} dx$$

extra cost for monopolist: $c(Q_1^* - Q_2^*)$

Sufficient condition for Option 3 to be better than Option 1



if
$$\epsilon$$
 small $W_{L}(\epsilon) \approx \frac{d}{d\phi} W_{L}(0) \cdot (\epsilon - 0)$

Problem: He people now have monopolist; with second option which gives new package when a surplus of $W_H(\xi) - W_L(\xi) \simeq$

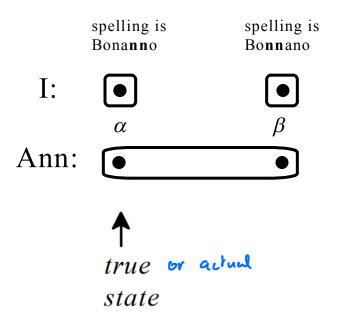
need to reduce V_H from $W_H(Q_1^*)$ to $W_H(Q_1^*) - [P_H(0) - P_L(0)] \ge$

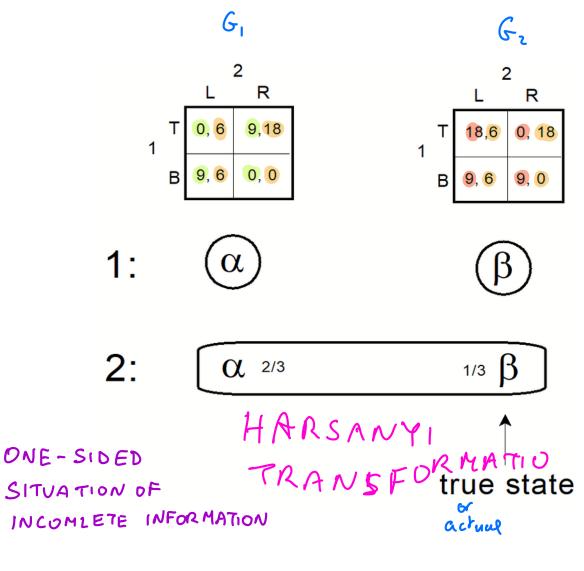
gain
$$(1-q_{H})N[(P_{L}(0)-c) \in J$$

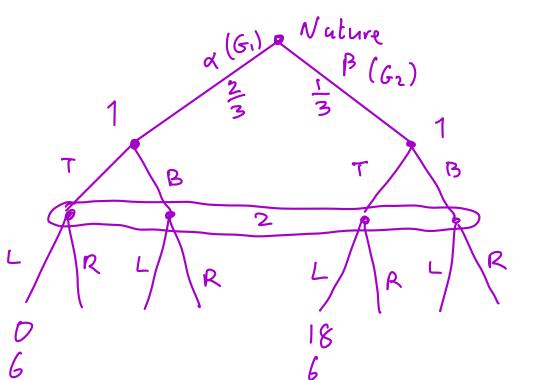
loss $q_{H}N[(P_{H}(0)-P_{L}(0)) \in J]$

worm introducing new package if

 $(1-q_{H})N((P_{L}(0)-c) \triangleq > q_{H}N[P_{H}(0)-P_{L}(0)] \triangleq J$
 $P_{L}(0)-c-q_{H}P_{L}(0)+q_{H}c>q_{H}[P_{H}(0)-P_{L}(0)]$
 $q_{H}[P_{H}(0)-P_{L}(0)]+q_{H}[P_{L}(0)-c]< P_{L}(0)-c$
 $q_{H}[P_{H}(0)-c]< P_{L}(0)-c$
 $q_{H}[P_{H}(0)-c]< P_{L}(0)-c$







$$S_{1} = \{TT, TB, BT, BB\}$$

$$S_{2} = \{L, R\}$$

$$\frac{2}{3}x + \frac{1}{3}w, \frac{2}{3}x + \frac{1}{3}2$$

