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Preface
Motivation

Data analysis and data literacy are important and valuable skills in today’s data age. Students

taking economics and related majors are well placed to take advantage of the demands for these

skills, as their major places greater weight on mathematical and statistical training than many

other majors.

This book is suited to the following uses.

1. A true first course in regression analysis, the statistical method most used in analysis of

economics data and the field of econometrics. The book’s main goal is to reach this audience.

2. A helpful inexpensive adjunct to “Introductory Econometrics” courses that use a more ad-

vanced text.

3. A stand-alone reference for any more advanced data analysis course or economics field course

that presumes a basic knowledge of linear regression.

How to Use this Book

The book takes a learning-by-doing approach. The key requirement is use of an econometrics or

statistical package. For the particular statistical package that is chosen to use with this book, the

instructor and student can easily work through each chapter using the datasets and computer code

that are all available at the book website. This is by far the best way to learn the material.

The book itself is limited to presenting key summary tables; few specific commands and consequent

computer output are provided as these vary with the package used in instruction.

The website cameron.econ.ucdavis.edu/aed provides the datasets as a Stata version 11

dataset, readable by most other packages, and as a comma-separated values text file, readable by

all packages. Datasets are referred to in the book using capital letters without any prefix or file ex-

tension. For example, the dataset called HOUSE in the text is available as file AED_HOUSE.DTA,

a Stata version 11 dataset, and as file AED_HOUSE.DTA.csv, a comma-separated values text file.

The book is written as much as possible to be usable with any statistical package. An appendix

provides key details on using Stata, the free packages R and Gretl, and the commercial econo-

metrics package Eviews. The datasets can be read into these packages. Selected parts of the main

text provide additional details on use of these packages. The spreadsheet programs Excel and

Google Sheets can also be used, but are more limited. Appendix A summarizes key commands

for the various statistical packages. The book website provides computer code for repeating the

analysis in the book using Stata, R and Gretl.

The book includes over three hundred end-of-chapter exercises that are mainly learning-by-

doing empirical exercises. Many use a wide range of datasets that can be obtained from the book

website. Overhead slides for each chapter are also available at the book website.



xviii PREFACE

Table 1: Book Chapters.

PART Ch. Title Essentials

I: UNIVARIATE 1 Analysis of Economics Data x

(Single Series) 2 Univariate Data Summary x

3 The Sample Mean

4 Statistical Inference for the Mean x

BIVARIATE 5 Bivariate Data Summary x

(Two series) 6 The Least Squares Estimator

7 Statistical Inference for Bivariate Regression x

8 Case Studies for Bivariate Regression x

9 Models with Natural Logarithms

MULTIVARIATE 10 Data Summary with Multiple Regression x

(Several series) 11 Statistical Inference for Multiple Regression x

12 Further Topics in Multiple Regression x

13 Case Studies for Multiple Regression x

14 Regression with Indicator Variables x

15 Regression with Transformed Variables

FURTHER TOPICS 16 Checking the Model and Data x

17 Special Topics

APPENDICES A Using Statistical Packages x

B Some Essentials of Probability Theory

C Properties of OLS and IV Estimators

D Solutions to Selected Exercises x

E Tables for Key Distributions

F Further Reading

Book Outline

Table 1 provides a summary of the book, which is divided into four parts.

1. Analysis of a single variable that covers the key parts of material presented in an introductory

probability and statistics class.

2. Analysis of the relationship between two variables,  and , with emphasis on bivariate linear

regression.

3. Analysis of the relationship between  and several other variables, with emphasis on multiple

linear regression.

4. Model and data checking and brief overviews of the most commonly-used methods beyond

OLS: fixed effects and random effects for panel data and clustered data, logit and probit for

binary dependent variable, several methods for causal inference, and time series regression.

Book appendices cover statistical packages, more advanced material on probability and estima-

tion theory, solutions to odd-numbered exercises, and statistical tables.
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Course Outline

The book is intended to be suitable for three different introductory courses.

1. An essentials course places less emphasis on motivating the distribution of the sample mean

and regression coefficient estimates, skipping chapters 3 and 7, and places less emphasis on

various extensions, skipping chapters 9, 12.2-12.8, 15 and 17.

2. A fast-paced ten-week quarter-long course with two lectures a week can cover the key material

in Chapters 1-16, including one case study in each of the two case studies chapters.

3. A semester-long course could cover most of chapters 1-16 and selected parts of chapter 17.

This book is additionally written to be used as a supplement to courses that use regression.

There is enormous heterogeneity in students knowledge of regression even after taking a first course

in regression. This book, one available at low cost, can be used as a supplement to fill gaps.

For the Instructor

The book is written to be suitable for students with a wide range of mathematical and statistical

backgrounds. The book presents methods in the main text with minimal use of mathematics - the

optional Appendices B-C provide greater mathematical detail. In particular, to be accessible to a

wide range of students the book is deliberately written at a lower level than the excellent leading

texts by Wooldridge (2019) and by Stock and Watson (2018).

Some use of mathematics is nonetheless necessary. The main text presents formulas using

summation notation. Changes in one variable with respect to another are generally presented

using delta notation, though at times connections to derivatives are made for the benefit of those

with a calculus background. Less-prepared students may find it possible to gloss over much of the

mathematics. The emphasis of the book is on the interpretation of statistical output rather than

dexterity with mathematical and statistical formulas.

The book does provide the essentials of probability, so that students understand the distinction

between sample and population, the distinction between estimate and parameter, and the con-

cepts of confidence intervals and hypothesis tests. Ideally students have taken a prior course on

probability and statistical inference for the population mean based on the sample mean. My own

experience is that even if students have taken such a course, many do not understand or do not

recall statistical inference. Accordingly students benefit greatly from seeing the material a second

time. Furthermore, some instructors may prefer to teach this course to students with no back-

ground in probability and statistics. The essentials of probability are covered briefly in Chapter

3, and are presented in more detail in Appendix B. Basic statistical inference on the sample mean

is covered in detail in Chapters 3 and 4. Derivations of the properties of the OLS estimator are

provided in Appendix C.

Regression results presented in this book are generally based on default standard errors in earlier

chapters, as these are identical across statistical packages. Appropriate robust standard errors are

used especially from chapter 12 on. Note that formulas for computing robust standard errors can

vary across statistical packages due to different finite sample adjustments; see Chapter 12.1.9.
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An individual chapter can be covered in one or two seventy-five minute lectures. To simplify the

exposition of methods, my approach is to work with the one data example throughout a chapter,

or even across several chapters in the case of summarizing individual earnings and modeling the

sale price of a house. At the same time many additional datasets are introduced throughout the

book, most notably in the case studies chapters and in the many exercises at the end of each

chapter. Some data examples come from empirical research articles published in leading economics

journals that were deliberately chosen in the belief that the associated articles would be intelligible

to undergraduate students.

As already noted, the exercises at the end of each chapter are mainly learning-by-doing empirical

exercises. Solutions to most odd-numbered exercises are given in Appendix D. It is easy for an

instructor to make variations on these exercises that lead to different answers. Variations include

using alternative datasets, using the same dataset with some observations dropped, or using the

same dataset with different variables.

Version History

The book is available as a pdf and as a hard copy at a modest price through Amazon’s Kindle

Direct Publishing.

Version 1.0 is dated December 2021 and was released January 5, 2022.

Version 1.1 is dated February 2022 and was released late February, 2022. It corrects errors in

Version 1.0 and in places provides some rewording for clarity. Section numbering is unchanged and

pagination is essentially unchanged.

This Edition compared to Earlier Drafts

This edition is a revision of the unpublished 2015 version. The basic progression of topics is un-

changed. Compared to that earlier version the initial chapters are simplified. More difficult concepts

such as power of tests and many uses of natural logarithms are pushed to later chapters. And there

is less repetition of material across chapters. The goal is to emphasize basic statistical analysis.

For details see a document provided at the book website cameron.econ.ucdavis.edu/aed.
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Chapter 1

Analysis of Economics Data

Statisticians specialize in data analysis, and offer courses that cover many of the statistical tech-

niques in this book. This chapter summarizes the main statistical methods used in analyzing

economics data.

1.1 Statistical Methods

The starting point of statistical analysis is a dataset, a collection of measurements that most often

come from a survey or from an experiment.

Statistical analysis begins with a summary or description of what can be a bewilderingly

large set of numbers. There are several standard statistics that are used to summarize features of

the data such as the central tendency of the data and the spread of the data. For example, given

data on annual income of a number of individuals we may compute the average income for these

individuals. This is relatively straightforward.

Most data analyses seek to go further and use such summary measures to extrapolate to the

world beyond the particular dataset at hand. For example, if the average annual income in a sample

of forty Californians is $60,000, what can we say about the average income of all Californians? Or

if forty tosses of a coin lead to 18 heads and 22 tails, can we conclude whether or not the coin is

fair coin?

This extrapolation entails the much more challenging methods of statistical inference - in-

ferring details of a population from the sample at hand. The two main statistical tools used are

confidence intervals and hypothesis tests; much of the book is focused on learning how to use

these tools in a variety of settings.

Additionally, steps should be taken to ensure that a sample is representative and obtained in

such a way that the phenomena of interest can be measured sufficiently precisely. Like other books

at this level, these issues are only briefly considered; they are covered in detail in separate statistics

courses on survey sampling and experimental design.

In some special cases the dataset may be large enough and precise enough that there is no

need to control for randomness due to sampling. For example, this would be the case if we had a

complete census of the population or if we could toss the coin a million times. While very large

1



2 CHAPTER 1. ANALYSIS OF ECONOMICS DATA

datasets are increasingly available, such as those from internet transactions, in typical economics

applications one needs to control for uncertainty.

1.2 Types of Data

The discipline of statistics covers a wide range of data types and associated methods that are

summarized in this section.

Within this wide range economists, and hence this book, focus on observational data on contin-

uously measured variables analyzed using regression methods. An example is sale price data from

a sample of individual house sales.

1.2.1 Economics Data

There are several types of data that may demand different statistical methods:

• Numerical data that are continuous.
• Numerical data that are discrete.
• Categorical data.

Economics data are usually numerical data that are naturally recorded and interpreted as

numbers. Furthermore, they often potentially take so many different values that they are viewed

to be continuous numerical data. Examples are individual annual income or national GDP.

Less often the data are discrete numerical data that take only integer values. Examples are

the number of jobs held at a point in time or the number of patents awarded to a firm in a year.

Categorical data are an alternative to numerical data where the data are recorded as belonging

to one of several possible categories, such as whether or not a person is employed. Such data may

be coded as numbers, e.g. 1 if employed and 0 if not employed, but are not intrinsically numerical.

This book emphasizes the study of economics data that are continuous numerical data.

Many examples will be provided, including leading relationships that are discussed in introductory

microeconomics and macroeconomics courses. In many cases economic theory is used to guide in

model selection. And in some cases economic data are used to test economic theory or to distinguish

between economic theories.

Before analysis begins, data are often transformed to a more suitable form. For example, sup-

pose interest lies in modelling improvements in living standards over time. A standard measure to

use is the annual growth rate in real per capita gross domestic product (GDP). This entails trans-

formations of the original GDP data to first adjust for inflation and population and to subsequently

calculate year-to-year proportionate changes.

1.2.2 Observational Data

Economics data are most often observational data, meaning they are based on observations of

actual behavior in an uncontrolled environment. A particular challenge of using observational data
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is that while it is easy to detect a relationship between two data series, it can be very difficult to

determine cause and effect.

By contrast many physical and biological sciences in particular use experimental data that are

observations on the results of experiments which can be controlled by the investigator. Experimental

methods and quasi-experimental methods are increasingly used in econometrics. For pedagogical

reasons these methods are deferred to Chapter 17.5 which presents various methods to determine

causal relationship, the goal of many econometrics studies.

1.2.3 Types of Data Collection

Distinction is made between several types of data collection:

• Cross-section data on different individuals at a point in time.

• Time-series data on the same quantity at different points of time.

• Panel (or longitudinal) data on the same individuals at different points of time.

• Repeated cross-section data on different individuals at different points in time

Cross-section data are data on different entities, such as individuals, households, firms or

countries, collected at a common point in time. Examples are earnings of individuals and output

of firms. Such data are most often used in microeconomics. Standard notation is to use the

subscript  to denote the typical observation. The sample of size  is denoted 1   with 

observation .

Time-series data are data on the same quantity collected at different points in time. Examples

are gross domestic product and the interest rate on a 13-week Treasury bill. Such data are most

often used inmacroeconomics and finance. Standard notation is to use the subscript  to denote

the typical observation. The sample of size  is denoted 1   with  observation . In this

book we use subscript  as much as possible, but revert occasionally to subscript  in some time

series settings. In particular, the one-period change in a time series variable is ∆ =  − −1
Panel data or longitudinal data are data on the same individuals, such as firms or people

or countries, where each individual is observed at several points in time. Examples include analysis

of individual income over several years, and analysis of GDP in several countries over time. Such

data are used in both microeconomics and macroeconomics. The typical observation is , data

for the  individual at time .

Repeated cross-section data or pooled data are cross-section data collected in more than

one time period, but in each time period different individuals are observed. Many surveys conducted

on a regular basis sample different individuals in each survey.

The same basic statistical principles apply for all these types of data collections. However,

each type of data collection also adds its own special considerations for statistical inference, such

as computing confidence intervals, and for model specification. We focus on the simplest case of

cross-section data.
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Figure 1.1: Linear regression example

1.3 Regression Analysis

Introductory statistics courses focus on data on a single variable considered in isolation, such as

the individual income and coin toss examples. Some economic statistics such as the unemployment

rate or the growth rate in real GDP or median earnings are also of interest on their own.

We first analyze univariate data, studying a single data series such as house price, with

individual observations denoted  or denoted . The treatment of univariate data is similar to

that in an introductory statistics course.

Most economic data analysis, however, is focused on measuring the relationship between two or

more variables. The statistical method used to measure such inter-relationships is called regression

analysis. Most of this book studies regression analysis.

Bivariate data are data on two related data series, denoted  and . For example, in Chapter

5 we consider the relationship between house price (in dollars) and house size (in square feet) for

a sample of 29 house sales. Figure 1.1 presents a scatter plot of the data which suggests that, as

expected, a higher price is associated with a higher price. Superimposed on this scatter plot is a

line, called a regression line, that is the best fitting line for these data using a criterion given in

Chapter 5. The regression line has slope coefficient equal to 74, approximately, so an increase in

house size of one square foot is associated with an increase in house price of $74.

Multivariate data methods consider three or more related series. Usually one of those vari-

ables, say , is explained by several other variables, say 1, 2, .... usingmultiple regression. For

example, we may consider the relationship between house price and several features of the house,

such as size, number of bedrooms and lot size.

The term regression arises due to the phenomena of regression towards the mean. For

example, consider the relationship between the height of a father () and the height of his son ().
If the father is of above average height, then the height of the son turns out to be on average also
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of above average height, though not as high as that of the father. Similarly the son of a below

average height father is on average below average, but not as below average as the father. More

generally the term regression refers to fitting a model of  as a function of .

Regressions may be used to measure how an outcome variable () changes as one of the
regressors () changes, or may be used to predict the outcome variable () for a given level of the
regressors ().

1.4 Key Concepts

1. There are two aspects to statistical analysis of data: description and inferential statistics.

The latter attempts to extrapolate from the sample to the population, often using confidence

intervals and/or hypothesis tests.

2. The analysis of economics data uses a subset of statistical methods, most notably regression

analysis for continuous numerical data, and emphasizes economic interpretation of economics-

related data.

3. Economics data are usually observational rather than experimental. This makes it difficult

to establish causal effects. For pedagogical reasons this complication is deferred to Chapter

17.5, though much econometrics research seeks to estimate causal relationships, even with

observational data.

4. Cross-section data (denoted ) are data on different individuals at a point in time; time-series
data (denoted ) are data on the same quantity at different points of time; panel data or
longitudinal data (denoted ) are data on the same individuals at different points of time;
repeated cross-section data are cross-section data collected in more than one time period, but

in each time period different individuals are observed.

5. The book covers, in turn, univariate data (single series), bivariate data (two series), and

multivariate data (several series).

6. The key method of this book is regression analysis.

7. Key Terms: Summary statistics; sample; population; statistical inference; continuous numer-

ical data; discrete numerical data; categorical data; observational data; experimental data,

cross-section data; time series data; panel data; longitudinal data; univariate data; bivariate

data; multivariate data; regression analysis; bivariate regression; multiple regression.
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1.5 Exercises

1. For each of the following examples state whether the data are numerical or categorical, and

state whether the data are cross-section, time series, panel or repeated cross-section data.

(a) Quarterly data on the level of U.S. new housing construction from 2000 to 2018.

(b) Data on number of doctor visits in 2018 for a sample of 192 individuals.

(c) Data on annual health expenditures for each U.S. state from 2000 to 2018.

(d) Data on usual mode of transportation used to commute to work for a sample of 151

individuals.

(e) Data on individual income from an annual survey from 2000 to 2018 that surveys different

individuals each year.

2. For each of the following examples state whether the data are numerical or categorical, and

state whether the data are cross-section, time series, panel or repeated cross-section data.

(a) Data on annual health expenditures in 2018 for the U.S. by use of funds.

(b) Data for several days on whether the Dow Jones Index at the close of trading was at a

higher or lower value than at the close of trading the preceding trading day.

(c) Data on sales this quarter by each of 23 sales representatives.

(d) Data on the price of 1 gigabyte of computer disk storage each year from 1980 to 2018.

(e) Annual earnings of 153 individuals in each of the years 2010 to 2018.

3. For each of the following state whether the data are observational or experimental.

(a) Data on earnings for individuals some of whom chose to participate in a training program

and some who did not.

(b) Data on earnings for individuals some of whom were randomly assigned to a training

program and some who were not.

(c) Data on school outcomes for charter schools and for traditional schools.

4. For each of the following state whether or not statistical inference is being used.

(a) Recording the number of heads in 40 coin tosses.

(b) Determining whether a coin is likely to be fair on the basis of the number of heads in 40

coin tosses.

(c) Recording the annual earnings of 125 randomly chosen people and calculating the aver-

age.

(d) Recording the annual earnings of 125 randomly chosen people and then determining how

likely it is that mean annual earnings in the population exceed $40,000.



Chapter 2

Univariate Data Summary

Univariate data are a single series of data that are observations on one variable. A numerical data

example is annual earnings for each person in a sample of women. A categorical data example is

expenditures in each of a number of categories.

The chapter begins with presentation of summary statistics for numerical data. These are useful

both in their own right and as a tool for checking that there are no obvious errors in data entry,

such as negative values for a variable that should be nonnegative.

The chapter then presents charts that can provide a very quick way to grasp the essential

features of univariate data. The graphical methods used vary with the type of data. While the key

charts are given, there are many possible variations. The graphs presented here are quite basic.

Presentation quality graphics entail much more preparation and are beyond the scope of this book.

Useful resources for graph styles are leading publications such as The Economist, The New York

Times and The Wall Street Journal that frequently present charts for economics data.

Statistical inference, using data from a sample to make inferences about the population from

which the data is sampled, is introduced in Chapter 3.

2.1 Summary Statistics for Numerical Data

Summary statistics or descriptive statistics provide a summary of data on a numerical vari-

able.

Consider data on the annual earnings of a sample of 171 women who are 30 years of age in

2010, all of whom worked full-time (35 or more hours per week and 48 or more weeks per year).

The data are in dataset EARNINGS.

7
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Table 2.1: Summary statistics: Annual earnings of 30 year-old female full-time workers in 2010

(n=171).

Statistic Value

Mean 41,413

Standard deviation 25,527

Minimum 1,050

Maximum 172,000

Number of Observations 171

Variance 651,630,282

Upper quartile (75th percentile) 50,000

Median (50th percentile) 36,000

Lower quartile (25th percentile) 25,000

Skewness 1.71

Kurtosis 7.32

Table 2.1 presents various summary statistics, rounded to the nearest dollar, that are explained

in this section. A summary statistics command in a statistical package usually automatically reports

at least the first five of these.

As a quick check of the data we note that there are 171 observations that range from $1,050

to $172,000. The minimum value is surprisingly low as it implies earnings of less than $1 per hour

for this sample of full-time workers. From a more detailed check of the original survey data, this

individual was self-employed, so such a low value is possible. The second lowest sample value of

annual earnings is $9,000.

The observations for a sample of size  are denoted

1 2  

Here 1 is the first observation, 2 is the second observation, .... and  is the 
 observation. For

cross-section data the typical observation is the  observation, denoted , while for time series

data it is more customary to use the subscript , in which case  is the 
 observation.

2.1.1 Central Tendency

A measure of central tendency or central location describes the center of the distribution of

the data.

The most common measure is the sample mean, which is the arithmetic average of the data.

For example, if the data take values 8, 3, 7 and 6, then the sample mean is (8 + 3 + 7 + 6)4 = 6.
More generally, for a sample of size , the sample mean ̄ is defined as

̄ =
1 + 2 + · · ·+ 




A shorthand notation to present this formula, and many other formulas for summary statistics,

uses summation notation. In general
P

=1  denotes the sum of all the  from  = 1 to , so
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that X

=1
 = 1 + · · ·+ 

In the current example, 1 = 8, 2 = 3, 3 = 7 and 4 = 6 so
P4

=1  = 8 + 3 + 7 + 6 = 24. As a
second example, if  = 5+2

2 then
P

=1  =
P3

=1(5+2
2) = (5+2×12)+(5+2×22)+(5+2×32) =

7+13+23 = 43. For constant  that does not vary with ,
P

=1  = × andP
=1  = ×P

=1 .

And
P

=1( + ) = 
P

=1  + 
P

=1 

Using summation notation, the sample mean can be written as

̄ =
1



X

=1


The other leading estimate of central tendency is the sample median. The data are first

ordered from the lowest value to the highest value, and the median is that value that divides the

ordered data into two halves. This is directly obtained as the midpoint of the ordered data if there

is an odd number of observations. For an even number of observations one chooses the average of

the two observations in the middle. For sample 8, 3, 7 and 6, the ordered sample is 3, 6, 7 and 8,

and the median equals (6 + 7)2 = 65.

The median has the advantage of being more resistant to outliers than the mean. For example,

mean income will change a lot if Bill Gates is included in the sample, whereas the median is

essentially unchanged. And the median can be used if the highest values are top-coded, as is often

the case for data on individual incomes. The mean is more often used, however, and this book

focuses on statistical inference for the mean rather than the median.

A third measure, less commonly-used, is the mid-range which is the average of the smallest

and largest values in the sample. This is very sensitive to outliers.

A fourth measure, the mode, is the most commonly occurring value. This is only useful when

the data is discrete, or if the underlying data are intrinsically continuous but the observed data are

greatly rounded, so that a given value can occur multiple times in the sample. Even then the mode

is not necessarily a good measure of central tendency, especially if the distribution has more than

one mode or if the distribution is asymmetric, defined below.

From Table 2.1, earnings are on average $41,413. For these data with 171 observations the

median is the 86 of the ordered observations, and this equals $36,000. So half the women in the
sample earn less than $36,000 and half earn more than this amount. Note that mean earnings in this

example are substantially greater than median earnings. This is often the case for data on incomes,

earnings and prices. The midrange is (172000 + 1050)2 or $86,525; this is much higher than the
mean and is not particularly meaningful here. The mode, not given in Table 2.1, is $25,000. In

practice it is unlikely that any two women in this sample of size 171 would have exactly the same

earnings. Here, due to rounding in reporting, ten women reported earnings of exactly $25,000.

2.1.2 Quartiles, Deciles and Percentiles

The median is the point that equally divides an ordered sample. One can consider other divisions

of the ordered sample.
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The lower quartile is that point where one-quarter of the ordered sample lies below and three-

quarters of the ordered sample lies above. The upper quartile is that point where three-quarters

of the ordered sample lies below and one-quarter of the ordered sample lies above. For example,

with 9 observations the upper quartile is the 3 highest, the median is the 5 highest and the
lower quartile is the 3 lowest. Adjustment, similar to that for the median with an even number
of observations, is needed when more than one data point could be the quartile. The median is the

middle quartile.

Even more detailed divisions of the sample are possible. Percentiles split the ordered sample

into hundredths. The  percentile is the value for which  percent of the observed values are

equal to or less than the value. The upper quartile, median, and lower quartile are, respectively,

the 75, 50, and 25 percentiles. Deciles split the ordered sample into tenths and are often
used, for example, to summarize the distribution of individual income. A quantile is a percentile

reported as a fraction of one rather than as a percentage. For example the 81 quantile is the 81

percentile.

From Table 2.1 the lower and upper quartiles of earnings are, respectively, $25,000 and $50,000,

so the middle half of 30 year-old female full-time workers earned between $25,000 and $50,000 per

year.

2.1.3 Data Dispersion or Spread

A measure of dispersion describes the spread or variability of the data. The most commonly-

used measure is the standard deviation.

An obvious measure to use is the average of the deviations ( − ) of the data  from the

sample mean . But this can be shown to always equal zero, because in sum the negative deviations

exactly balance the positive deviations. Instead these deviations are squared, before averaging, to

get the sample variance 2 where

2 =
(1 − ̄)2 + · · ·+ ( − ̄)

− 1
2

=
1

− 1
X

=1
( − ̄)2

The division by ( − 1) rather than the more obvious  is explained in Chapter 3.2. A simpler

computational formula for the sample variance is 2 = 1
−1{(

P
=1 

2)−̄2}; see exercise 26 which
shows that

P
=1 ( − ̄)2 = (

P
=1 

2
 )− ̄2.

The sample variance is measured in units that differ from those in the original data, due to the

squaring. For example, if the data were in units of dollars then the variance is in units of dollars

squared. To return to the original units we take the square root. This yields the sample standard

deviation , defined as

 =
√
2 =

r
1

− 1
X

=1
( − ̄)2

If one sample has a larger sample standard deviation than another then we view the sample as

having greater variability.
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As an example consider the sample 8, 3, 7 and 6 which has  = 4 and ̄ = 6. Then the sample
variance

2 =
(8− 6)2 + (3− 6)2 + (7− 6)2 + (6− 6)2

4− 1 =
14

3
' 4667

and the sample standard deviation is  =
p
143 ' 216.

In some cases it is useful to measure the variability of the data relative to the mean, using the

coefficient of variation

CV =


̄


This measure is useful for comparing the relative variability in a variable across groups. For

example, the sample of 171 women had ̄ = 41413 and  = 25527, while a similar sample of 191
men had ̄ = 52345 and  = 65035. So men have greater variability in earnings than women,
but this may potentially just be an artifact of men also having higher earnings on average. The

coefficient of variation controls for the different means. Since CV= 6503552345 = 124 for men
exceeds CV= 062 for women, men have higher variability in earnings relative to mean earnings
than do women.

Three other measures of variation in the data are the range, the interquartile range, and the

average absolute deviation.

The range is the difference between the maximum and minimum values in the sample.

An outlying observation, or outlier, is an observation that is unusually large or small. The

interquartile range, the difference between the upper quartile and the lower quartile, has the

advantage of being more resistant to outliers than the standard deviation or the range.

The average absolute deviation, 1


P
=1 | − ̄|, is also more resistant to outliers than the

standard deviation or the range.

From Table 2.1, the sample standard deviation of earnings is $25,527. The coefficient of variation

is 25,527/41,413 = 0.62, so the standard deviation of earnings is 62% of mean earnings. The range

is (172000− 1050) or $170,950. The interquartile range is (50000− 25000) or $25,000.
For income and wealth data, interest lies in measuring relative shares and how these change over

time. The P90/P10 ratio measures the ratio between the 90th percentile and the 10th percentile

and is necessarily at least one. The P90/P10 ratio has the advantage that it does not require data

on the richest individuals whose data may be top-coded for reasons of anonymity or unavailable

due to survey nonresponse. If data on the entire distribution is available the Gini coefficient

can be constructed. This measure ranges from zero with perfect equality to one if all goes to one

individual. For wages and salaries of full-time full-year workers in the U.S. the P90/P10 ratio is in

the range 5 to 6 while the Gini coefficient is around 0.35 to 0.40. Increases in these measures over

time indicates rising inequality.

2.1.4 Interpretation of the Standard Deviation

The standard deviation is the commonly-used measure of variability, as is clear from subsequent

chapters. It is not as easy to understand as the mean, which is simply the average.
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Figure 2.1: Normal distribution: Probability of being within one, two or three standard deviations

of the mean.

A useful way to interpret the standard deviation is to use results for the normal distribution.

For a random variable  that is normally distributed, the probability of being within one, two or

three standard deviations of the mean is, respectively, 0684, 0955 and 0997.

It follows that approximately two-thirds of the sample is within one standard deviation of the

mean, 95% is within two standard deviations and 99.7% is within three standard deviations of

the mean. These results can also provide an approximate guide for data that are not normally

distributed.

This is illustrated in Figure 2.1, where the mean is denoted  (“mu”, the Greek letter for m),

and the standard deviation is denoted  (“sigma”, the Greek letter for s).

Regardless of the actual distribution, a result called Chebychev’s inequality implies that it

always the case that at least three-quarters of a random sample is within two standard deviations

of the mean, and at least eight-ninths is within three standard deviations of the mean.

As an example, consider the earnings data. These data have ̄ = 41 413 and  = 25 527,
so the interval (15,886, 66,940) is within one standard deviation of the mean since, for example,

̄−  = 41 413− 25 527 = 15 886. For these data 77% of the observations are within this interval,

compared to 68% predicted by the normal approximation. Similarly, for these data 96% of the

observations are within two standard deviations of the mean, compared to 95% predicted by the

normal approximation.

2.1.5 Box-and-Whisker Plot

A box-and-whisker plot or, more simply, a box plot, provides some of the key summary statistics

for the data in a simple graphic.

All box-and-whisker plots give the lower quartile, median and upper quartile; these form the

“box.” Simple box-and-whisker plots additionally give the minimum and maximum; these form the

“whiskers.” More complicated box-and-whisker plots additionally plot outlying values. In that case
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Figure 2.2: Box Plot: Annual earnings of 30 year-old female full-time workers in 2010.

the whiskers are data-determined lower and upper bounds, ones appropriate for data that are not

too greatly dispersed, and outlying values are observations that exceed these bounds.

Figure 2.2 gives a box-and-whisker plot, of the more complicated form, for the earnings data.

The solid shaded region ranges from the lower quartile of $25,000 to the upper quartile of $50,000.

The solid white line within the shaded region is the median of $36,000. The upper bar equals the

upper quartile plus 1.5 times the inter-quartile range. Here this equals 50 000 + 15 × 25 000 or
$87 500. The six dots represent the six distinct values of earnings above $87,500 in the sample.
(In fact due to one duplicate there are seven observations in excess of $87,500). The lower bar is

the minimum sample value of $1,050, as in this example the minimum exceeds the lower quartile

minus 1.5 times the inter-quartile range.

The plot clearly shows the right-skewness of the data. The difference between the upper quartile

and the median is much greater than the difference between the median and the lower quartile.

And there are quite a few outlying sample points that take large values.

2.1.6 Symmetry

A symmetric distribution is one whose shape is the same when reflected around the median.

The normal distribution is an example.

Positive skewed or right-skewed data have a much longer tail on the right. Most of the data

are bunched on the left, but there is a continued presence of high values on the right. Negative

skewed or left-skewed data have a much longer left tail.

Skewness can sometimes be visually detected. Figure 2.3 presents histograms for symmetric,

right-skewed and left-skewed data.

A formal measure of asymmetry is the skewness statistic, calculated as a scale-free measure

by normalizing by the standard deviation. Different statistical packages can use slightly different

formulae in computing the skewness statistic. The simplest measure, used by most econometrics
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Figure 2.3: Histograms for symmetric, right-skewed and left-skewed data.

packages, is

Skew =
1


P
=1( − ̄)3£

1


P
=1( − ̄)2

¤32 
Some statistical packages, including Excel, multiply this measure by

p
(− 1)(− 2), so Skew=


(−1)(−2)

P
=1

¡
−̄


¢3
. This adjustment is felt to lead to a better measure in small samples. In

large samples the difference between the two measures disappears and both approximately equal
1


P
=1

¡
−̄


¢3
, where  is the sample standard deviation.

A zero value indicates symmetry since there is then no skewness. A positive value indicates

positive or right-skewness and a negative value indicates negative skewness. There is no clear-

cut rule for when data are highly skewed; a skewness measure in excess of one in absolute value

indicates at least mild skewness. Note also that in small samples the skewness statistic is a less

precise estimate of data skewness. For the three examples in Figure 2.3 the skewness measure

equals, respectively, −004, 192, and −231.
Appreciable difference between the sample mean and sample median is also a sign of skewness.

For right-skewed data the sample mean usually exceeds the sample median. For left-skewed data

the sample mean usually is less than the sample median.

If economics data are skewed then they are usually right-skewed. For the earnings data, the

histogram given below in Figure 2.4 clearly displays right skewness with a long right tail. For

example, 94% of observations lie below the midrange of $85 475 and only 6% lie above the midpoint.
And, from Table 2.1, the mean of $41,413 exceeds the median of $36,000 and the skewness measure

is 171.

Much economic analysis centers on modelling central tendencies. If skewness leads to an appre-

ciable difference between the mean and the median, then both may be reported or, depending on

the purpose, only one of the mean or median may be reported. For example, household income is

right-skewed and government statistical reports emphasize median household income rather than

mean household income. This reports the income of the household in the middle of the household
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income distribution. At the same time, other government reports emphasize real per capita GDP

which is a mean. This is in part because in that case the median cannot be computed, as data

are not collected on GDP at the individual level. But it is also because in measuring the resources

available to the economy interest lies in how much is available per person rather than how much is

available to the median person.

2.1.7 Kurtosis

The kurtosis statistic measures the relative importance of observations in the tail of the distrib-

ution.

Different statistical packages can use slightly different formulae in computing the kurtosis

statistic. The simplest measure, used by most econometrics packages, is

Kurt =
1


P
=1( − ̄)4£

1


P
=1( − ̄)2

¤2 
Some statistical packages use an alternative measure of excess kurtosis that is felt to be better

in small samples. One such measure, used by Excel, multiplies the kurtosis measure given above

by
(+1)(−1)
(−2)(−3) and then computes excess kurtosis by subtracting 3

(−1)2
(−2)(−3) rather than 3. In

large samples the difference between different measures disappears and they approximately equal
1


P
=1

¡
−̄


¢4
, where  is the sample standard deviation.

The normal distribution, with Kurt = 3, is often used as a benchmark, especially if the dis-
tribution is reasonably symmetric. Excess kurtosis measures kurtosis relative to the normal

distribution, yielding

ExcessKurt ' Kurt− 3
Positive excess kurtosis means that there is greater area in the tails than for the normal distrib-

ution with the same mean and variance, since − ̄ is raised to the fourth power. Some references

state that the kurtosis statistic additionally measures the peakedness of the distribution, but this

need not be the case especially if the distribution is asymmetric or bimodal.

The kurtosis measure is most often used for financial data. Fat tails are a feature of data on

investment returns, and the greatest interest may lie in the tails since unusual events can provide

the greatest opportunity to make a profit (or a loss).

From Table 2.1 the earnings data has kurtosis statistic (Kurt) of 732, substantially greater
than 3, suggesting that the sample distribution has fatter tails than the normal distribution. For

the three examples in Figure 2.3 the kurtosis measure equals, respectively, 304, 1168, and 1657.

2.2 Charts for Numerical Data

Histograms are the leading method for graphical inspection of cross-section numerical data. His-

tograms can also be useful for time series numerical data, provided that the data have been trans-

formed to have little overall trend. As an example, histograms may be useful for summarizing real

GDP growth rates or price inflation rates over time, but are of very limited use for describing GDP

and price levels which trend upward over time.
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Table 2.2: Frequencies: Individual annual earnings in bins of width 15,000.

Range (or bin) Frequency Relative frequency (%)

0-14,999 12 7.0

15,000-29,999 53 31.0

30,000-44,999 52 30.4

45,000-59,999 20 11.7

60,000-74,999 11 6.4

75,000-89,999 16 9.4

90,000-104,999 2 1.2

105,000-119,999 3 1.8

120,000-134,999 0 0.0

135,000-149,999 1 0.6

150,000-164,999 0 0.0

165,000-180,000 1 0.6

2.2.1 Histograms

Table 2.2 summarizes the earnings data grouped into intervals of width $15,000. Each interval is

called a bin; here there are 13 bins, each of equal bin width of $15,000. The frequency is the

number of observations that fall into a given bin, and the relative frequency is the proportion

(or percentage) that fall into a given bin. For example, 53 observations or 31.0% of the sample

have earnings between $15,000 and $29,999.

A histogram is a graph of the frequency distribution of the data where, for continuous data,

the data are first grouped into bins. The horizontal axis has the values of the variable, while there

are two variations for the vertical axis. One variation has the frequencies in each bin on the vertical

axis. A second variation has the density (the relative frequency divided by the bin width) on the

vertical axis — then the shaded area of the histogram has area one.

The first panel of Figure 2.4 presents the histogram corresponding to Table 2.2, with frequencies

on the vertical axis. The second panel of Figure 2.4 provides a more detailed histogram that groups

the data over a narrower range, with bin width $7,500.

The histogram varies with the number of bins, with a trade-off between few bins providing not

enough detail and too many bins yielding a histogram that is very choppy. Given  observations,

a common default choice for the number of bins is
√
. The class intervals are then of width

approximately equal to the highest value minus the lowest value divided by the number of bins,

with possible modification for unusually small or large observations. For  = 171 this yields 13 bins
of equal width (172000 − 1050)13 = 13 150. Table 2.2 and the first panel of Figure 2.4 instead
round these defaults to 12 bins of equal width $15,000 with a start value of $0. The second panel

of Figure 2.4 doubles the number of bins, by halving the bin width to $7,500.

A variation on a histogram, one that gives more detail on the actual values taken by the data,

is a stem and leaf display. This splits each data point into leading digits, called a stem, and

remaining digits, called a leaf. For example for the earnings data the ten thousands may be the

stem and the remaining digits the leaf. The data are then presented in tabular form where each
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Figure 2.4: Histogram: Individual annual earnings with two different bin widths

row corresponds to a stem value and has first column the stem value and the second column the

leaf values for that column.

Histograms can be used for numerical data that is either discrete or continuous. For discrete

data that take low values, such as the number of different jobs held by a person during the year,

each distinct value forms a bin so the bin width is one.

2.2.2 Smoothed Histograms (Kernel density estimate)

Data that take many different values, such as earnings data, have an underlying continuous prob-

ability density function rather than a discrete probability mass function. A classic example is the

normal distribution which has a bell-shaped density. Probabilities are determined by areas under

the curve and the total area under a density is one. It is then natural to directly estimate the

density, using a smoothed histogram.

A smoothed histogram smooths the histogram in two ways. First, it uses rolling bins (or

windows) that are overlapping rather than distinct. Second, in counting the fraction of the sample

within each bin it gives more weight to observations that are closest to the center of the window

and less to those near the ends of the window.

The smoothed histogram varies greatly with choice of window width, just as the histogram

varies with the bin width. It varies less with the weights that are used. Different statistical packages

may have different rules for choosing the default window width, and use different weights, called

kernel weights, leading to different smoothed histograms.

The most commonly-used smoothed histogram is a kernel density estimate. Two kernel

density estimates for the earnings data are presented in Figure 2.5. The first panel uses a window

width close to the statistical package’s default width, while the second is smoother as it uses a

window width that is twice as large. The kernel density estimate is not bell-shaped, implying that

the data are not normally distributed, and appears to be right-skewed. The vertical axis is scaled

so that the area under the curve equals one.
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Figure 2.5: Smoothed histogram: kernel density estimate for individual annual earnings with two

different window widths

2.2.3 Histograms and Smoothed Histograms using a Statistical Package

Histograms can be obtained using the histogram command in Stata, hist function in R, hist

function in Gretl, and distplot hist command in Eviews. The default number of bins depends

on the number of observations; as an alternative the number of bins can be specified.

Kernel density estimates can be obtained using the kdensity command in Stata, density

function in R, kdensity function in Gretl and distplot kernel command in Eviews. The key

option to consider changing from the default is the window width. More specialized is to change

the kernel weight function from the default.

2.2.4 Line Charts for Ordered Data

A line chart plots the successive values 1 2  of the data against the successive index values

1,2,...

The leading application is to time series data that are ordered by time. This leads to graphs

that plot the variable of interest against time.
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Figure 2.6: Line Chart: Real GDP per capita in U.S. (in 2012 dollars).

Figure 2.6 presents a line chart of quarterly data from 1959 to 2019 for U.S. real gross domestic

product (GDP) per capita in constant 2012 dollars. The data are in dataset REALGDPPC. The

line chart clearly indicates great improvement in living standards, with per capita real GDP tripling

over the sixty years.

More generally, line charts can be useful whenever there is a natural ordering of the observations.

For example, given data on test scores for 31 students it may be helpful to arrange the scores in

descending order and produce a line chart of test score against student rank.

2.3 Charts for Numerical Data by Category

Standard charts for numerical data by category include bar charts, pie charts and, for geographic

location categories, spatial maps.

2.3.1 Bar Charts

Consider U.S. health expenditures in 2018 of $3,653 billion (18% of GDP), broken into its main

subcomponents. The data in dataset HEALTHCATEGORIES are completely listed in Table 2.3.

A bar chart provides a bar for each category where the length of the bar is determined by the

category value, here expenditures on the category of health.

A column chart or vertical bar chart puts the values on the vertical axis and the category

on the horizontal axis. A horizontal bar chart instead puts the category on the vertical axis and

the value on the horizontal axis. The choice of which to use is determined in part by whether one

wants a short and wide chart, in which case a column chart is most often used, or a tall and narrow

chart, in which case a horizontal bar chart is most often used.
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Table 2.3: Numerical data by category: U.S. health expenditures in 2018 in billions of dollars

Category Amount ($ billions)

Hospital Care 1192

Physician and Clinical Services 726

Dental 136

Other Professional 104

Other Health and Personal 192

Home Health Care 102

Nursing Care 169

Drugs and Supplies (Retail Sales) 456

Government Administration 48

Net Cost of Health Insurance 259

Government Public Health 94

Noncommercial Research 53

Structures and Equipment 122
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Figure 2.7: Column chart: U.S. health expenditures in 2018 (in billions of dollars)

Figure 2.7 presents a column chart for U.S. health expenditure data in 2018. This chart, ordered

by size of category, makes it clear that hospital and physician expenditures are by far the largest

components of total health expenditures.

Bar charts can also be used for larger datasets by first forming different categories according to

what range of values the numerical data falls into. For example, one might group years of completed

schooling into 0-11 (less than high school), 12 (high school graduate), 13-15 (some college), 16 (4-
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Figure 2.8: Spatial Map: Average family size in each U.S. state in 2010.

year college graduate) and 17 and above (postgraduate). Then give a bar chart of average income

by schooling category. A histogram is just a column chart of frequencies plotted against the class

boundaries.

2.3.2 Spatial Map

A spatial map for data that varies by geographic location plots the data against a geographic

map.

As an example, consider average family size in each U.S. state in 2010 which ranges from 2.83

in Maine to 3.56. Figure 2.8 shows the average family in size in each state with darker shades

corresponding to larger family size. The figure shows that southwest states tend to have larger

families while north central states have smaller families. Spatial maps require more specialized

software than that needed for the other graphs presented in this chapter.
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2.4 Summary and Charts for Categorical Data

As an example of intrinsically categorical data consider choice of fishing site for a sample of 1,182

fishers given in dataset FISHING. There are four possibilities — fishing may be from a beach, pier,

charter boat or private boat.

2.4.1 Data Summary using Tabulation

The fishing site data may be recorded as text, such as “beach”, “pier”, “charter” and “private”. Or

they may be recorded as numbers, such as 1, 2, 3 and 4. But even in the latter case the possibilities

are intrinsically categorical. Furthermore there is no natural ordering of the categories.

For such data it is meaningless to compute summary statistics such as the sample mean. Instead

the data are summarized using a tabulation of the frequencies for each category. For the fishing

site data this is given in Table 2.4. It is clear that more people fished from a boat (private or

charter) than from the shore (beach or pier).

Table 2.4: Categorical data: Frequencies at each fishing site

Category Frequency Relative frequency (%)

Beach 134 11.34

Pier 178 15.06

Private Boat 418 35.36

Charter Boat 452 38.24

2.4.2 Pie Charts

A pie chart splits a circle into slices, where the area of each slice corresponds to the relative

frequency of observations in each category. Pie charts are most useful for visually representing each

categories’ share of the total, provided there are not too many categories.

Figure 2.9 presents a pie chart using the fishing site data. Again this makes clear that the

largest categories are charter boat and private boat fishing.

The health expenditure data of Chapter 2.3 could be presented using a pie chart, if one was

interested in the shares of each category of health spending. But this would be difficult to read as

there are too many categories. Instead it would be best to aggregate the smallest categories. For

example, one might use hospital, physician, drugs and supplies, and all other categories combined.

2.5 Data Transformation

Continuous numerical data are often transformed before analysis.
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2.5.1 Natural Logarithms

Many cross-section data sets can be right-skewed. For example, data on income or wages of a

sample of individuals are often right-skewed. The natural logarithm transformation can lead

to a transformed data series that is more symmetrically distributed. It reduces especially large

outlying values. Chapter 9.5 presents many uses of the natural logarithm.

The left panel of Figure 2.10 presents a histogram of earnings of female full-time workers aged

30 in 2010, along with a kernel density estimate, using data from dataset EARNINGS introduced

at the start of this chapter. The data are clearly right-skewed. The second panel of Figure 2.10

shows the histogram after transformation to natural logarithms. The second panel histogram is

close to symmetric, aside from one very small value (the sample included an observation with

unusually low annual earnings of $1,050 and corresponding low natural logarithm of 696), and is
approximately normally distributed. In both cases the vertical axes are scaled so that the areas

under the histograms and the kernel density estimates equals one.

If a variable  is such that ln is normally distributed, then  itself is said to follow the

lognormal distribution.

2.5.2 Standardized Scores (z-scores)

A standardized score is obtained by subtracting the mean and dividing by the sample standard

deviation. Thus

 =
 − ̄


  = 1  

where  is the original value, ̄ is the sample mean and  is the sample standard deviation. The

resulting score has sample mean zero and sample standard deviation one.
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Figure 2.10: Levels and natural logarithms: Histograms and kernel density estimates for individual

annual earnings

A standardized score is often called a z-score as its distribution may be well approximated by a

standard normal distribution, which also has mean 0 and variance 1. Note also that the symmetry

and kurtosis statistics approximately equal the sample averages of the standardized scores for each

observation raised to, respectively, the third and fourth power.

A standardized score is immediately interpretable — a one unit increase in  equals a one

standard deviation increase in the original score .

Standardized scores are useful for comparing data series that are scaled differently. For example,

suppose we wish to compare student performance on two tests with different total points or of

different difficulty, so that the sample means and standard deviations differ across the tests. Then

we compare the sample values of the standardized scores 1 = (1− ̄1)1 and 2 = (2− ̄2)2,
where the subscripts 1 and 2 denote the first and second tests.

2.6 Data Transformations for Time Series Data

In this section we present some commonly-used transformations for time series data.

2.6.1 Moving Averages

A moving average or rolling average smooths data by taking the average of observations in

several successive periods. This is especially useful for data that bounce around from period to

period; averaging can smooth the data. Visual analysis of long-term trends in the data are easier

to see, since period-to-period variation is reduced.

A simple moving average averages the current and immediate past observations. For exam-
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Figure 2.11: Moving average and seasonal adjustment smoothing: Monthly sales of existing homes

ple, a five-period moving average takes the average of the data over the current and preceding four

periods, or ( + −1 + −2 + −3 + −4)5.
If instead the current observation appears in the middle, then the moving average is a centered

moving average. For example, a centered five-period moving average takes the average of the

data two periods ago, one period ago, this period, next period, and the period after that, or

(−2 + −1 +  + +1 + +2)5. The centered moving average at time  has the disadvantage
that it is not immediately available at time  as its computation also uses data from some future

time periods.

A moving average can be used for several reasons, including reducing random noise in the data,

smoothing out business cycle variation, and smoothing out seasonal variation.

As an example we consider smoothing out seasonal variation in U.S. monthly data from 2005

to 2014 on sales of existing homes, compiled by the National Association of Realtors. The data are

in dataset MONTHLYHOMESALES.

The first panel of Figure 2.11 plots the original data along with an eleven-month centered moving

average. The original data are relatively variable within a year, with a low point in January and

February and a peak in summer. The data also indicate the large decrease accompanying the global

financial crisis, with a thirty percent decline compared to 2005. The moving average smooths the

data considerably. Note that centering the moving average comes at the expense of it not being

computable for the most recent months as it requires data in future months.

2.6.2 Seasonal Adjustment

For data that fluctuate within the year due to seasonal influences specific methods have been

developed to smooth out the seasonal variation that hopefully are better than simply using a

moving average.
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Seasonal adjustment smooths data to control for seasonal variation in the data. For example,

monthly data are decreased in months that have relatively high values every year and are increased

in months that have unusually low values every year.

The second panel of Figure 2.11 presents as a dashed line the published seasonally adjusted

data for the existing homes sales series, using the widely-used X-11-ARIMA seasonal adjustment

program developed by the U.S. Census Bureau. The seasonal adjusted series is much smoother

than the original, and essentially eliminates the seasonal variation.

Many macroeconomics series are released as seasonally adjusted data. Analysts interpreting

these data should be aware that there is no indisputable best way to seasonally adjust.

2.6.3 Real and Nominal Data

Economics data are often measured in dollars. Any meaningful interpretation of these data over

time requires conversion to the purchasing power of a dollar in a benchmark year. The original data

are called nominal data, measured in current dollars. Thus 1990 data are measured in 1990

dollars, 1991 data are measured in 1991 dollars, and so on. The data after conversion are called

real data, measured in constant dollars. Then data in various years are reported in dollars of

a given year, say 2012 dollars for example. Similar conversion using exchange rates or purchasing

power parity indexes is needed to compare nominal data across countries with different currencies.

There is no perfect way to create a price index (or a quantity index) when both prices and

quantities of the various goods and services that are components of the index change over time.

The leading published indexes use methods that control partially for this problem.

As an example of use of real data rather than nominal data, consider U.S. Gross Domestic

Product (GDP), the standard measure of the economy’s total output. The solid line in the first

panel of Figure 2.12 plots quarterly data on nominal GDP from 1959 to the first quarter of 2020. The

data in dataset REALGDPPC are seasonally adjusted quarterly data, annualized by multiplying

by four. Nominal GDP has increased 42 times, from $510 billion to $21,500 billion. The fall in

GDP in the recession of 2007-2009 is most clearly visible.

Part of this large increase in nominal GDP reflects price inflation — a dollar in 1959 had much

more purchasing power than a dollar in 2020. The conversion from nominal to real data is done by

using a price index, which measures prices relative to a value of 100 in a base year. Here we use

the GDP chain-type price index, normalized to equal 100 in 2012. The index in the first quarter

of 1959 was 16.347, so a 1959 dollar was worth 10016347 = $612 in 2012 dollars, and 1959 first
quarter nominal GDP of $510.33 billion was worth $3,121 billion (51033 × 10016347) in 2012
dollars. Similarly in the first quarter of 2020 the index was 113.502 and nominal GDP of $21,539

billion was worth $18,977 billion in 2012 dollars. Table 2.5 summarizes these calculations.

The dashed line in the first panel of Figure 2.12 plots real GDP from 1959 to 2020, measured

in 2012 dollars. Real GDP increased 61 times, from $3,121 billion to $18,977 billion. This is still a

substantial increase, but it is much less than the 42 times increase in nominal GDP. The difference

is due to a 6.9 times (11350216347) increase in prices over this period, leading to real GDP rising
4269 = 61 times.

The recessions in 1973-74, 1980, 1982 and 1991 become more pronounced using real GDP data,

with more pronounced dips due to eliminating increases in nominal GDP that occur due to price
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Figure 2.12: Nominal and real data: U.S. GDP and per capita GDP in current dollars and in 2012

dollars.

Table 2.5: Nominal and real data: U.S. GDP example

Time Period Nominal Value Index Real Value

Current $ billions 2009=100 2009 $ billions

1959 Q1 510.33 16.347 510.33×100/16.347=3,121
2020 Q1 21,539 113.502 21,539×100/113.502=18,977

inflation.

What if we used a year different from 2012 as the base year? Then the price index will differ and

real GDP will differ as it is no longer measured in 2012 dollars. But the resultant proportionate

changes will be unchanged, with a 6.9 times rise in prices and real GDP becoming 6.1 times larger

over the 60 years.

2.6.4 Per Capita Data

Per capita data are data formed from an original series by dividing by the size of the population.

In some cases interest lies in aggregate data and in some cases per capita data. For example, to

compare the size of the economy over time use real aggregate GDP, but to compare living standards

over time use real per capita GDP.

As already noted, real GDP increased 6.1 times from 1959 to 2020. But the U.S. population

is 1.87 times larger, with increase from 176 million to 329 million. Thus real per capita GDP has

grown about 3.3 times, as 61187 = 33. This is illustrated in the second panel of Figure 2.12, with
increase in real GDP per capita from $17,700 to $57,600. This is still an appreciable improvement
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over time, and is about 2.0 percent per annum, since 102060 ' 33. But it is nowhere near as large
as the initial starting point of a 42 times increase in nominal GDP.

Often U.S. real GDP growth is compared to that in western Europe or Japan. U.S. growth in

real GDP is higher, but so too is its population growth. In fact the growth rate for per capita real

GDP in the U.S. is similar to that in western Europe and Japan.

2.6.5 Growth Rates and Percentage Changes

If interest lies in changes over time it can be convenient to transform to percentage changes or

growth rates. For example, to analyze changes in living standards we consider percentage changes

in real per capita GDP over time.

The one-period percentage change in  is calculated as

Percentage change in  = 100×  − −1
−1



In many cases this is converted to an annualized rate. For example, for quarterly data

the quarterly change multiplied by four gives the annualized quarterly change. Alternatively, for

quarterly data one can instead compute a four-period percentage change, 100 × ( − −4)−4,
which also expresses the change as an annual rate. For data that are not already seasonally adjusted,

this latter method can smooth out quarterly seasonal fluctuations. Similarly for monthly data we

may use 100× ( − −12)−12.
Potential confusion can arise when statements are made about changes in growth rates or

interest rates. For example, suppose the growth rate increases from 3 percent in one year to 5

percent the next year. It is misleading to call this a 2 percent increase in the growth rate, since this

literally means that an increase in the growth rate from 3.0 percent to 30 × 102 = 306 percent.
Instead the correct term to use is that the growth rate increased by two percentage points. Very

small changes are described in basis points, where a basis point is one-hundredth of a percentage

point. For example, an increase from 3.0 percent to 3.15 percent is an increase of fifteen basis

points.

An alternative calculation method for computing approximate percentage changes is to use

Percentage change in  ' 100× (ln − ln−1)

This result uses the calculus result that  ln = 1, so  ln = . Thus ∆ ln ' ∆ or
the change in ln approximately equals the proportionate change in . See Chapter 9.1 for further
details.

2.7 Key Concepts

1. Commonly-used statistics for numerical data include the mean and median (for central ten-

dency), the standard deviation, inter-quartile range and range (for dispersion), quartiles and

percentiles, and symmetry and kurtosis statistics.
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2. An outlying observation, or outlier, is an observation that is unusually large or small.

3. A box plot provides a visual summary of key sample statistics. Some box plots also plot

outlying observations.

4. Commonly-used charts that can provide a useful visual presentation of the data are his-

tograms, kernel density graphs, column charts, line charts, bar charts and pie charts. Which

is best to use depends on whether the data is numerical (continuous or discrete) or categorical,

and whether the data are cross-section or time series data.

5. Common transformations of economic data include the natural logarithm, standardized scores

and (for time series data) moving averages, seasonal adjustment, real data, growth rates and

percentage changes.

6. Key Terms: sample; summary statistics; central tendency; central location; summation nota-

tion; sample mean; median; mid-range; mode; quartile; decile; percentile; quantile; dispersion;

sample variance; standard deviation; coefficient of variation; range; outlying observation; out-

lier; inter-quartile range; symmetry; skewness; right-skewed; positive skewed; kurtosis; nor-

mal distribution; box plot; histogram; frequency; relative frequency; stem and leaf display;

smoothed histogram; kernel density estimate; line chart; horizontal bar chart; vertical bar

chart; column chart; pie chart; standardized score; moving average; seasonal adjustment;

nominal data; real data; growth rates; percentage changes; percentage points; basis points.

2.8 Exercises

1. Obtain
P

=1  for the following cases with  = 5:

(a)  = 1. (b)  = . (c)  = 2
2. (d)  = 1. (e)  = (2 + 3)

2. Calculate the following

(a)
P6

=1 2. (b)
P4

=1 2. (c)
P3

=1 3
3. (d)

P6
=4 . (e)

P4
=1(5 + 2)

3. For the panel variable  that takes values 11 = 5, 12 = 3, 13 = 7, 21 = 8, 22 = 6, and
23 = 4:

(a) Calculate
P3

=1  for  = 1 and for  = 2.

(b) Calculate
P2

=1  for  = 1, for  = 2 and for  = 3.

4. For the panel variable  that takes values 11 = 2, 12 = 5, 21 = 8, 22 = 4, 31 = 6, and
32 = 7:

(a) Calculate
P2

=1  for  = 1, for  = 2 and for  = 3.

(b) Calculate
P3

=1  for  = 1 and for  = 2.
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5. Compute from first principles (i.e. using the formula and a calculator) the mean, standard

deviation, coefficient of variation, skewness statistic and kurtosis statistic for the sample 4,

2, 0, 2. Show all calculations.

6. Repeat the previous exercise when the observations are ten times larger, so the sample is now

40, 20, 0, and 20. Which of the measures are scale-free measures?

7. Repeat exercise 5 when the observations are translated by 2, so the sample is now 6, 4, 2,

and 4. Which of the measures are unchanged by translation?

8. A sample of size 200 has mean of 20 and standard deviation of 5. If the data are normally

distributed, what range of values do you expect 95% of the sample to lie in?

9. IQ scores have a mean of 100, standard deviation of 14 and are approximately normally

distributed. What range of IQ scores do you expect 99.7% of the population lie in?

10. For a sample of size 1,000 the central two-thirds of the observations lie between 60 and 100. If

these data are normally distributed, provide an estimate of the mean and standard deviation.

11. For each of the following situations state whether the median price or the mean price of cars

sold is a more useful measure of central tendency.

(a) You want to know the typical price of a car.

(b) You also know the number of cars sold and want to calculate sales tax receipts when car

sales are subject to a 5% tax.

12. In each of the following situations state whether or not the data are likely to be positively

skewed, or whether there is not enough information to know.

(a) The mean is 50 and the median is 20.

(b) The skewness statistic is 01.

(c) The excess kurtosis statistic is 5.

(d) The 10 percentile is 20, the median is 50 and the 90 percentile is 200.

13. The dataset HOUSE has data on the price and size of houses sold in a small homogeneous

community.

(a) Read the data into your statistical package.

(b) Obtain detailed summary statistics for price. Do the data appear to be skewed? Explain.

(c) Obtain a histogram. Do the data appear to be normally distributed? Explain.

(d) Obtain a kernel density estimate. Do the data appear to be normally distributed?

Explain.

14. Repeat the previous exercise for house size.



2.8. EXERCISES 31

15. A sample of 30 people had the following years of completed schooling: 12, 12, 14, 12, 12, 12,

12, 12, 16, 12, 14, 12, 12, 13, 14, 12, 17, 12, 12, 16, 12, 12, 8, 14, 16, 12, 12, 17, 12, 16.

(a) Read the data into your statistical package.

(b) Obtain summary statistics. Give the inter-quartile range. List the first five observations.

(c) Obtain a table of frequencies for these data.

(d) Give a histogram, with a bin width of one for these discrete data. Do the data appear

to be normally distributed?

(e) Provide a pie chart - what is the most common value of the variable?

16. Repeat the previous exercise for the following samples:

(a) 20 people age 30 with the following number of annual doctor visits: 0, 0, 3, 4, 2, 5, 5, 2,

11, 2, 2, 2, 3, 0, 8, 0, 8, 1, 2, 4.

(b) 25 families with the following number of family members: 3, 3, 4, 7, 4, 3, 5, 2, 2, 4, 7, 3,

4, 3, 3, 5, 3, 4, 4, 1, 6, 5, 4, 5, 5.

17. The unemployment rate for college graduates (bachelor’s degree or higher) aged 25 to 34 years

in April in each of the years 2000 to 2019 was 1.3, 2.0, 2.7, 2.9, 2.6, 2.1, 2.2, 1.9, 2.2, 4.3, 4.7,

3.9, 3.6, 3.6, 3.0, 2.5, 2.1, 2.3, 1.9, 2.2.

(a) Read the data into your statistical package.

(b) Obtain key summary statistics. Give the inter-quartile range. List the first five obser-

vations.

(c) Order by increasing unemployment rate and give a line chart.

18. Repeat the previous exercise for high school graduates (no college) aged 25 to 34 years with

April unemployment rates of 4.4, 5.2, 8.7, 7.9, 7.1, 6.4, 6.1, 5.5, 6.8, 13.6, 13.9, 13.7, 10.1, 9.9,

8.8, 7.8, 7.8, 6.0, 6.3, 4.8.

19. Obtain data from the website https://fred.stlouisfed.org/ (FRED - Federal Reserve Economic

Data) on the unemployment rate for those 25 years and over with some college or an associate

degree in April in each of the years 2000 to the present. Answer the same questions as in

exercise.17
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20. Table 2.3 gives U.S. health expenditures by category for 2018. For 2013 the corresponding

amounts were, respectively, 937, 587, 111, 80, 148, 80, 156, 370, 37, 174, 75, 47, 118.

(a) Give a column chart, ordered by the amount of expenditure.

(b) Give a pie chart. Is this more or less useful than a column chart? Explain.

21. The dataset PRICEEARNINGSRATIO has annual data on the Shiller cyclically-adjusted

price-earnings ratio (variable cape) in January for S&P500 firms from 1881 to 2020.

(a) Obtain the summary statistics for cape. Do the data appear to be skewed? Do the data

appear to have greater kurtosis than the normal distribution? Explain.

(b) Plot the histogram. Do the data appear to be skewed?

(c) Provide a time series plot of the data. Comment on any unusual features.

(d) Do the data to be unusually high or low in 2020? Explain.

22. The dataset AUSREGWEALTH has data on average net worth of households in thousands

of dollars in 517 regions in Australia in 2003-04.

(a) Obtain the summary statistics. Do the data appear to be skewed? Do the data appear

to have greater kurtosis than the normal distribution? Explain.

(b) Plot the histogram. Do the data appear to be skewed?

(c) If your software does this, plot the kernel density estimate. Do the data appear to be

skewed?

(d) Now take the natural logarithm of average net worth and repeat parts a-c.

23. Use quarterly data in dataset STOCKINDEX from January 1957 to November 2012.

(a) Calculate the z-score for each of the Dow Jones, Nasdaq and S&P 500 indexes.

(b) Do these z-scores have mean zero and standard deviation one?

(c) Give histograms (or kernel density estimates) for each of the three z-scores. Do they

appear to be normally distributed?

(d) On the same graph give line plots of each of the three z-scores against time. Do the

three series appear to move together?

24. Use data in dataset GDPAUSTRALIA from January 1960 to September 2013. The data are

quarterly data on nominal GDP (at an annual rate in millions of Australian dollars), a price

index (=100 in 2011) and population (in millions).

(a) Plot nominal GDP and real GDP (which you need to create) against time. Comment.

(b) Compute nominal GDP per capita and real GDP per capita and plot these against time.

Comment.
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25. Use data in dataset GDPAUSTRALIA, described in the previous exercise.

(a) Compute a four period moving average for nominal GDP. Has this reduced seasonal

variation?

(b) Compute annual growth rate in real GDP as four times the proportionate change from

one quarter to the next.

(c) Compute annual growth rate in real GDP as the proportionate change over the last four

quarters.

(d) Compare the two growth rate measures and comment.
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26. Derivation of the alternative computational formula for the sample variance.

(a) Show that ( − ̄)2 = 2 − 2̄+ ̄2

(b) Hence show that
P

=1 ( − ̄)2 =
P

=1 
2
 −

P
=1 2̄+

P
=1 ̄

2

(c) Use the definition of ̄ to show that
P

=1  = ̄

(d) Hence show that
P

=1 2̄ = 2̄
2. (Hint:

P
=1  = 

P
=1 )

(e) Substitute this result into part (b) and simplify to show thatP
=1 ( − ̄)2 = (

P
=1 

2
 )− ̄2



Chapter 3

The Sample Mean

Obtaining the sample mean ̄, and other summary statistics, is straightforward. But different sam-

ples will yield different values of these sample statistics, due to the inherent randomness in the data.

How can this randomness be controlled for if we want to make statements about the unchanging

features of the distribution for the entire population? More simply, how can we extrapolate from

the sample to the population?

For example, dataset EARNINGS introduced in Chapter 2 has data on individual annual earn-

ings for a sample of 30-year-old female full-time workers. The sample mean from a random sample

of size 171 was $41,413. What can be said about the likely range of values of mean earnings for all

30-year-old female full-time workers in the country? Are average earnings in this population really

as high or as low as $41,413? Or is the observed sample mean of $41,413 just an artifact of this

particular sample?

The chapter is relatively dense. While selecting only the essential material, it introduces a

considerable amount of the probability theory covered in an introductory probability and statistics

course. The focus is on the concepts of mean and variance of a single random variable, and the

consequent distribution of the average of  random variables. The simplest material is presented in

the text, with additional background material on probability and derivations for the sample mean

presented in Appendix B.

For readers who skip this chapter, the essential properties of the sample mean are restated in

Chapter 4.2.

3.1 Random Variables

Different samples take different values due to randomness. To account for this randomness we need

to introduce random variables and define key properties of random variables, notably their mean,

standard deviation and variance.

35
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3.1.1 Random Variables

A random variable is a variable whose value is determined by the outcome of an experiment,

where an experiment is an operation whose outcome cannot be predicted with certainty.

For example, the experiment may be tossing a coin and the random variable may take value 1

if heads and 0 if tails. As a second example, the experiment may be randomly selecting a person

from the population and the associated random variable takes value equal to their annual earnings.

Standard notation is to denote the random variable in upper case, say  (or  or ), and to

denote the values that the random variable can take in lower case, say  (or  or ).

3.1.2 Example: Coin Toss

The simplest example of a random variable is one that has only two possible values. We consider

a coin toss with a fair coin and define the random variable  to take value 1 if heads and value 0
if tails. Because the coin is fair, there is equal probability of heads or tails.

The random variable is

 =

½
0 with probability 05
1 with probability 05

3.1.3 Mean of a Random Variable

Interest lies in summarizing the distribution of the random variable. Key measures used are the

mean, to describe the average value that the random variable may take, and the variance and

standard deviation, to measure the variability of the random variable.

The expected value of the random variable  is the long-run average value that we expect

if we draw a value of  at random, draw a second value and so on, and then obtain the average

of these values. Equivalently, calculate the probability-weighted average by weighting each value 

that  may take by the probability of that value  occurring.

This expected value, denoted E[], is called the mean of .

Definition 1 The mean  = E[] of the random variable  is the probability-weighted average of

all values that the random variable  may take. The notation  (or mu) is used to denote the man

as  is the Greek letter for m.

Suppose our random variable may take values 1, 2  with potentially different probabilities

Pr[ = 1], Pr[ = 2]  These probabilities necessarily sum to one. Then the mean of  is

the probability-weighted average

 ≡ E[] = 1 × Pr[ = 1] + 2 × Pr[ = 2] + · · ·
=
P

 × Pr[ = ]

where
P

 denotes summation over all the possible distinct values that  may take.
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As an example, for a fair coin toss where  can take values 0 or 1 with equal probabilities of

0.5 and 0.5 we have

 =
P

 × Pr[ = ]

= Pr[ = 0]× 0 + Pr[ = 1]× 1
= 05× 0 + 05× 1
= 05

As a second example, suppose the coin is not fair and  can take value 1 with probability 06
and value 0 with probability 04. Then  = 0× 04 + 1× 06 = 06.

3.1.4 Variance and Standard Deviation

The variance is the long-run average value that we expect if we draw a value of  at random, say

1, and compute its squared deviation from the mean (1−)2, draw a second value and compute
(2 − )2, and so on, and then obtain the average of these values.

This expected value of ( − )2, denoted E[( − )2], is called the variance of  and is

also denoted 2 or 2 .

Definition 2 The variance 2 = E[( −)2] of the random variable  is the probability-weighted

average of all values that ( − )2 may take. The standard deviation is  =
√
2. The notation 

(or sigma) is used to denote the standard deviation as  is the Greek letter for s.

For random variable  taking values 1, 2  the variance of  is the probability-

weighted average

2 ≡ E[( − )2] = (1 − )2 × Pr[ = 1] + (2 − )2 × Pr[ = 2] + · · ·
=
P

(− )2 × Pr[ = ]

The standard deviation  is obtained by taking the square root of the variance.

Continuing the earlier fair coin toss example with  = 05

2 =
P

(− )2 × Pr[ = ]

= (0− 05)2 × Pr[ = 0] + (1− 05)2 × Pr[ = 1]

= 025× 05 + 025× 05
= 025

The variance of  is 025 and the standard deviation of  is
√
025 = 05.

3.1.5 Example: Best Three of Five

Suppose two evenly matched teams, with equal probabilities of winning any game, play in a series

of up to five games, with the winner the first to win three games. How many games do we expect

on average?
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Let  denote the number of games, in which case  can take values 3, 4 or 5. It can be shown

that Pr[ = 3] = 1
4 , Pr[ = 4] = 3

8 , and Pr[ = 5] = 3
8 . Then

E[] = 3× 1
4 + 4× 3

8 + 5× 3
8 = 4

1
8 

so on average we expect 4125 games. Additionally

Var[] = (3− 418)2 × 1
4 + (4− 418)2 × 3

8 + (5− 418)2 × 3
8 =

39
64 

3.1.6 Some Key Properties of Random Variables

Further details on random variables are given in Appendix B. The mean of a constant  is that

constant . If we add a fixed amount  to a random variable then the mean is changed by the

amount . And if we multiply a random variable by a fixed multiple  then the mean is multiplied

by . Combining these results we have

Remark 1 E[+ ] = + ×E[], for constants  and 

The variance of a constant  is zero. If we add a fixed amount  to a random variable then

the variance is unchanged. And if we multiply a random variable by a fixed multiple  then the

variance is multiplied by 2. Combining these results we have

Remark 2 Var[+ ] = 2×Var[], for constants  and 

For example, if  has mean  and variance 2, then  +  has mean  +  and variance 2

and  has mean  and variance 22. It follows that  +  has mean  +  and variance

22. Applying these rules it follows that  = ( − ) has mean 0 and variance 1;  is called a

standardized random variable.

3.2 Random Samples

For statistical inference we view our data as being a random sample with each observation being a

random outcome.

3.2.1 Random Samples

A sample of size  takes values denoted 1  . In Chapter 2 we focused on using various

descriptive statistics and graphs to summarize these values. Now we recognize that each value is a

random outcome: 1 is the observed or realized or outcome value of the random variable 1, 2 is

the observed or realized or outcome value of the random variable 2, and so on.

For example, suppose we have a sequence of four coin tosses with consecutive results tails, heads,

heads and heads. Then random variable 1 has realized value 1 = 0, 2 takes value 2 = 1, 3

takes value 3 = 1 and 4 takes value 4 = 1.

Definition 3 A sample of size  has observed values 1 2   that are realizations of the ran-

dom variables 12 .
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3.2.2 The Sample Mean is a Random Outcome

The sample mean is the average of the  sample values 1  , or

̄ =
1 + 2 + · · ·+ 


=
1



X

=1


For example, for four coin tosses that yield values 0, 1, 1 and 1, the sample mean is ̄ =
(0 + 1 + 1 + 1)4 ' 075.

The sample values 1   are realized outcomes of the random variables 12 . It

follows that the sample mean ̄ is a realization of the random variable

̄ =
1 +2 + · · ·+


=
1



X

=1


The random variable ̄ is also called the sample mean. It should be clear from the context

whether sample mean refers to the random variable ̄ or its observed value ̄

Definition 4 The observed sample mean ̄ is the realized value of the random variable ̄; ̄ is

also called the sample mean.

3.2.3 Sample Variance and Standard Deviation

The sample variance is the average of the squared deviations of  around ̄, rather than around

, since  is unknown. From Chapter 2

2 =
1

− 1
X

=1
( − ̄)2

The divisor (− 1) is called the degrees of freedom because only (− 1) terms in the sum are

free to vary since they are linked by the relationship ̄ = 1


P
=1 . Taking the square root of 

2

yields the sample standard deviation 

Like the sample mean, the sample variance is the realization of a random variable, namely

2 =
1

− 1
X

=1
( − ̄)2

Similarly, the sample standard deviation  is a realization of the random variable .

3.3 Sample Generated by an Experiment: Coin Tosses

We consider an example of a sample generated by an experiment where the values for the mean

and standard deviation of the underlying random variable  are known and are specified.

We then take a series of samples, by running the experiment many times, and for each sample

obtain the sample mean ̄. We are interested in comparing the distribution of the many sample

means to the distribution of 
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Figure 3.1: Coin tosses histograms: for x in one sample (n = 30) and for mean of x in 400 samples

(n = 30).

3.3.1 Example: Coin Tosses

We consider the fraction of times that a fair coin lands heads in 30 tosses.

The random variable  = 1 if heads and  = 0 if tails. Given equal probabilities of heads and
tails,  has mean  = 05 and standard deviation  = 05.

The left panel of Figure 3.1 shows a histogram for one sample of 30 tosses. In this sample there

were 10 heads and 20 tails, so ̄ = 1030 = 0333, and  = 0479, values that due to randomness
differ from  = 05 and  = 05.

3.3.2 Many Samples

Now randomly draw 400 samples, each of 30 coin tosses. In this example the first three such samples

have means ̄1 = 333, ̄2 = 500 and ̄3 = 533. Dataset COINTOSSMEANS has all 400 sample
means.

The right panel of Figure 3.1 presents a histogram for the 400 sample means. The histogram

is roughly centered on the individual mean; the average of the 400 means is 0499 which is close to
 = 05. The standard deviation of the 400 means equals 0086. So there is much less variability in
these 400 means than in the individual observations. Here the standard deviation of the 400 means
is between one-fifth and one-sixth of  = 05, the standard deviation of . Finally, we superimpose
the density for the normal distribution with mean 0.499 and standard deviation 0.086. It is clear

that the histogram of the 400 means is roughly that of a normally distributed random variable.

In the preceding example we did not actually toss a coin 12,000 times to obtain the results for

400 samples, each with 30 coin tosses. Instead a computer was used to simulate the coin tosses.

The method to do so is explained in Chapter 3.8.
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3.4 Properties of the Sample Mean

The coin toss example yielded (1) sample mean that is on average close to the mean  of the indi-

vidual observations; (2) variability of the sample mean that is much less than that of the underlying

individual observations; and (3) sample mean that is approximately normally distributed.

In this section these results are formalized in a general setting. The statistical properties of

the random variable ̄, the sample mean, are determined by the process generating the underlying

individual random variables 12 .

3.4.1 Assumptions

Standard basic assumptions about the individual random variables  are that

A.  has common mean : E[] =  for all 

B.  has common variance 
2: Var[] = 2 for all 

C. Different observations are statistically independent:  is statistically independent of    6=


Here statistical independence implies, for example, that the value taken by 2 is not influenced

by the value taken by 1; see Appendix B.2 for a more formal definition. For example, for a fair

coin toss the probability of heads on the second coin toss is 0.5 regardless of whether the first coin

toss yielded heads or tails.

Short-hand notation for assumptions A-B is that  ∼ ( 2) for all  or, even more simply,
that

 ∼ ( 2)
where ∼ means “is distributed as”, and the terms in parentheses are, respectively, the mean and
the variance of .

Assumptions A-C are met when data are obtained from a simple random sample, often

called more simply a random sample, where we make independent draws 1  from the

same distribution. Chapter 3.4.6 discusses relaxing these assumptions.

3.4.2 Mean of the Sample Mean

The mean of the sample mean ̄ is

̄ ≡ E[̄] = 

In words, the expected value of the sample mean equals the mean for each individual, so the average

of ̄ from many samples is expected to equal .

This result means that if we were able to obtain many random samples and for each sample

obtain the sample mean, then on average the sample means equal the mean of a single variable .
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Only assumption A (common mean of ) is needed to obtain this result. The proof uses

E[] = E[] and E[ +  ] =E[]+E[ ]. Then

E[̄] = E[ 1

(1 +2 + · · ·+)]

= 1

E [1 +2 + · · ·+]

= 1

{E[1] + E[2] + · · ·+ E[]}

= 1

{+ + · · ·+ } = 

3.4.3 Standard Deviation of the Sample Mean

The variability of ̄ around its mean of  is measured using the variance and standard deviation

of ̄.

The variance of the sample mean ̄ is

2
̄
= Var[̄] ≡ E[(̄ − ̄)

2] =
2




where 2 is the variance of . The proof requires all of assumptions A-C (same mean, same

variance and independence of ) and uses Var[] = 2E[] and that for independent variables
Var[ +  ] =Var[]+Var[ ]; see Appendix B.2 for complete details.

The standard deviation of the sample mean ̄ is then

̄ ≡
r

2


=

√



The variance result that 2
̄
= 2 implies that the sample mean is less variable than the

underlying data, as demonstrated in Figure 3.1 for the coin toss example.

Furthermore the variability of the sample mean as an estimate of the mean of an individual

variable  decreases greatly as the sample size increases, at rate  for the variance and at rate
√


for the standard deviation. Thus for the coin toss example the standard deviation of the 400 means
was 0086, close to the true standard deviation 

√
 = 05

√
30 ' 0091.

As expected, larger samples lead to greater precision in estimating . Furthermore,

2
̄
= 2→ 0 as →∞, so the sample mean will be very close to  as the sample size →∞.

Remark 3 Under simple random sampling the sample mean ̄ is the realization of a random

variable ̄ that has mean equal to the mean  and standard deviation 
√
 that gets smaller as

the sample size increases.

3.4.4 Normal Distribution and the Central Limit Theorem

From the right panel of Figure 3.1 the sample means appear to be approximately normally distrib-

uted, even though each observation is clearly not from the normal distribution. Remarkably this is

the case in quite general settings, provided the sample size is sufficiently large.
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The preceding results imply that the random variable

̄ ∼ (, 2)
Subtracting the mean and dividing by the standard deviation leads to a standardized random

variable that by construction has mean 0 and variance 1. Here we denote this standardized random
variable by , so

 =
̄ − 


√

∼ (0, 1)

In general the distributions of ̄ and of  vary with the distribution of  and there is no simple

formula for these distributions. One notable extension is that if , the underlying variable for a

single observation, is normally distributed then ̄ is normally distributed and  is standard normal

distributed. Remarkably even if  is not normally distributed we obtain these results, provided

the sample size is large.

In particular, if the sample satisfies assumptions A-C and, additionally, the sample size →∞,
then a result from statistics called the central limit theorem, states that  has the standard

normal distribution, so then

 ∼ (0, 1) as →∞

This remarkable result result is proved using advanced mathematical methods; there is no intuition

for the result. The central limit theorem, first derived in 1733, gets its name because it is for the

limit (as →∞) of a measure of the center of the distribution.
It follows that for large  a good approximation to the distribution of ̄ is

̄ ∼ (, 2)

Often   30 is sufficient for this to be a reasonable approximation. ̄ is said to be asymptotically

normal distributed, where the term asymptotic means as the sample size goes to infinity.

The wide applicability and usefulness of the central limit theorem cannot be understated. Re-

gardless of the distribution of the underlying random variable , if assumptions A-C hold then

averaging leads to a standardized random variable that is standard normally distributed in large

samples. It can also be extended to cases where not all of assumptions A—C hold; see Appendix

B.2.

Remark 4 Under assumptions A-C the central limit theorem implies that the standardized random

variable  = (̄ − )(
√
) is standard normal distributed as the sample size goes to infinity.

For large  a good approximation is that ̄ ∼ (, 2)

3.4.5 Standard Error of the Sample Mean

The variance and standard deviation of ̄ depend on the variance 2 which is unknown. Replacing

2 by its estimate 2, leads to the following estimates.

The estimated variance of ̄ is

2
̄
=

2


=

1
−1

P
( − ̄)2



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Taking the square root, the estimated standard deviation of ̄, called the standard error of

the sample mean, is

(̄) =
√

=

q
1

−1
P

( − ̄)2

√




where  is the sample standard deviation, the sample estimate of the standard deviation of .

Note that in general the term “standard error” means estimated standard deviation. The

various estimators considered in this book each have a distinct standard error. In many situations

computer output will include a reported “standard error”, but this is not necessarily the standard

error of the sample mean ̄.

Remark 5 Under simple random sampling the standard error (the estimated standard deviation) of

the sample mean ̄ equals 
√
 where  is the sample standard deviation for a single observation.

It can be shown that, under assumptions A-C, 2 = 1
−1

P
=1( − ̄)2 has the desirable

property that E[2] = 2. For this reason the formula for 2 divides by − 1 rather than the more
obvious .

3.4.6 Relaxing assumptions A-C

The starting point is to assume simple random sampling, but methods can be adjusted to relax

assumptions A-C.

Assumption A requires a common mean . Regression analysis generalizes this by allowing the

mean to differ with individual characteristics. For example, expected earnings for an individual

may vary with education.

Assumption B requires a common variance and assumption C requires independence of obser-

vations. If either of these assumptions fail, then ̄ still has mean , provided assumption A holds,

but the variance of ̄ is no longer 2. In particular, if observations are correlated (assumption

C fails) then alternative formulas to 
√
 are used to compute estimate (̄), the standard error

of the sample mean. The correct (̄) is most easily obtained by least squares regression on just
an intercept and using appropriate robust standard errors; see Chapter 12.1.

A greater complication arises if the sample is not representative of the population. This is

discussed in Chapter 3.7.

3.4.7 Summary for the Sample Mean

The distinction between variability in , the random variable leading to the  sample value ,

and the variability in ̄, the random variable with observed value the sample mean ̄, can cause

confusion. A summary given simple random sampling is the following:

1. Sample values 1   are realized or observed values of the random variables 1 

2. Individual  are assumed to be independent have common mean  and variance 2

3. The average ̄ of the  draws of  has mean  and variance 2.
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Figure 3.2: 1880 Census histogram: Age for the entire U.S. population.

4. The standardized statistic  = ̄−

√

has mean 0 and variance 1

5. Under assumptions A-C,  is standard normal distributed as sample size  → ∞, by the
central limit theorem.

6. For large  a good approximation is that ̄ ∼ (, 2)

7. The standard error of ̄ equals 
√
, where “standard error” is general terminology for

“estimated standard deviation”.

3.5 Sampling from a Finite Population: 1880 Census

As a second example of sampling we consider obtaining a sample from a finite population.

3.5.1 Example: 1880 U.S. Census

The 1880 Census provides a complete enumeration of the U.S. population in 1880. We consider

one of the variables that was recorded, that on age in years.

3.5.2 Population

Figure 3.2 provides a histogram of age for all 50,169,452 people recorded as living in the U.S. in

1880. The distribution is basically declining in age. The blips are due to individuals rounding their

age to the nearest five years or ten years.

For a complete census such as this, the observed distribution is actually the distribution of ,

with the age of each person occurring with probability 1 , where  = 50,169,452. The population
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Figure 3.3: 1880 Census histograms: Age in one sample (n = 25) and Mean age in 100 samples (n

= 25).

average age is 2413 years, so  = 2413, since [] =
P

 × Pr[ = ] =
P

=1  × 1

= 2413.

Similarly, the population standard deviation of age is 1861, so  = 1861.

3.5.3 Samples

Now consider taking one randomly-drawn sample of size  = 25 drawn from this population of

size  = 50,169,452. The left panel of Figure 3.3 presents the histogram for this single sample

of size  = 25. For this sample, the average age was 27.84 years, so ̄ = 2784, and the standard
deviation of age is 2071, so  = 2071. Due to the randomness of sampling, these are similar to,
but not exactly equal to,  and .

Now randomly draw 100 distinct samples of size 25, leading to 100 different sample means. The
first three such samples turned out to have means ̄1 = 2784, ̄2 = 1940 and ̄3 = 2328 years.
The right panel of Figure 3.3 presents a histogram for these 100 sample means that are stored in

dataset CENSUSAGEMEANS. Several things are apparent.

First, the histogram is roughly centered on the mean . In fact the average of the 100 means is
2378, close to  = 2413.

Second, there is much less variability in these 100 means than in the original population. Here
the standard deviation of the 100 means is 376, roughly one-fifth of the standard deviation of  =
1861. In fact from theory already presented ̄ has standard deviation 

√
 = 1861

√
25 = 372.

Third, the histogram is roughly that of a normally distributed random variable. This is apparent

by superimposing the density for the normal distribution with mean 23.78 and standard deviation

3.76.
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3.6 Estimation of the Population Mean

In the examples given so far the distribution of  has been fully specified, so that we know the

exact value of the population mean . In practice  is unknown and we wish to estimate .

For example, if a coin is known to be fair then for a single coin toss  = 05. But suppose we do
not know that the coin is fair. More generally let Pr[ = 1] =  in which case Pr[ = 0] = 1− 

and some simple algebra shows that  = . Now we need to estimate , which in this example is

the same as estimating . The obvious estimator is ̄, but in what sense is ̄ a good estimator of

?

Due to randomness, an estimator of  will not exactly equal . Two desirable properties of

an estimator of  is that its distribution be centered on  and that it has as little variability as

possible around .

3.6.1 Parameter, Estimator and Estimate

The goal in estimation is to estimate one or more parameters, where a parameter is a constant

that determines in part the distribution of . Examples of parameters are the mean  and the

variance 2.

Definition 5 A parameter is a constant that determines in part the distribution of . An esti-

mator is a method for estimating a parameter. An estimate is the particular value of the estimator

obtained from the sample.

For estimation of the mean of  using the sample mean, the parameter is , the estimator is

the random variable ̄, and the estimate is the sample value .

3.6.2 Unbiased estimators

The first goal of estimation is to have an estimator that is centered on the parameter we wish to

estimate. One standard criteria used is unbiasedness.

Definition 6 An unbiased estimator of a parameter has expected value equal to the parameter.

The sample mean ̄ is unbiased for  under assumption A (a common mean) since, as already

shown, E[̄] = .

Remark 6 Under simple random sampling the sample mean is unbiased for , meaning that in

repeated samples it will on average equal .

3.6.3 Minimum Variance Estimators

Restricting attention to unbiased estimators still allows many potential estimators. For example,

the sample median is an alternative estimator to the sample mean that is unbiased for  if  is

symmetrically distributed. In that case we discriminate between such estimators on the basis of

the size of their variance.
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Definition 7 A best estimator or efficient estimator in a class of estimators has minimum

variance among the class.

Smaller variance is desired as then there will be less variability in the estimator from sample to

sample. As an example of a poor choice for an unbiased estimator, suppose we just used the first

observation in each sample of size  to estimate . Then this estimator is unbiased from sample

to sample as E[1] = . But it has variance 2 which is high relative to other possible unbiased

estimators.

For simple random samples the sample mean ̄ has variance 2. Whether alternative unbi-

ased estimators for  can have smaller variance than this depends on the distribution for . For

some common distributions of , notably the normal, Bernoulli, binomial, Poisson and exponen-

tial, it can be shown that, given data from a simple random sample, no other unbiased estimator

of  has smaller variance.

Remark 7 Under simple random sampling the sample mean has the smallest variance among un-

biased estimators for some common distributions of  (including the normal, Bernoulli, binomial,

Poisson and exponential) though not for all distributions of 

The sample mean is generally used, for simplicity and because even in situations where the

sample mean is not the most efficient estimator, its variance is usually not much greater than the

minimum possible variance, so the efficiency loss in using the sample mean is not great. The next

chapter presents confidence intervals for  and tests of hypotheses on  that use the sample mean

as the estimate of 

3.6.4 Consistent estimators

A more advanced concept considers asymptotic properties of an estimator, i.e. behavior as the

sample size goes to infinity.

Definition 8 A consistent estimator of a parameter is one that is almost certainly arbitrarily

close to the parameter, as the sample size gets very large.

A sufficient condition for consistency is that (1) any bias disappears as the sample size gets

large, and (2) the variance of the estimator goes to zero as the sample size gets large. A more

precise definition of consistency is given in Chapter 6.4.

The sample mean ̄ is consistent for  under simple random sampling (assumptions A-C) as it

is unbiased and has variance 2 which goes to zero as  → ∞. This convergence of ̄ to  as

the sample size gets large is an example of a so-called law of large numbers.

3.7 Nonrepresentative Samples

The standard assumption is that data are generated from a simple random sample. As already

noted, for unbiased estimation of the mean the key assumption is assumptions A, that the sample

has common mean ; assumptions B-C can be relaxed.
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Serious complications arise, however, if the sample is not representative of the population of

interest. Then assumption A in Chapter 3.4 does not hold, and ̄ may be biased and inconsistent

for the population mean .

This issue is particularly relevant for samples based on a survey. It has become relatively

inexpensive to conduct a survey by means such as telephone or the internet. Due to nonrepre-

sentativeness of the grouped surveyed, or high nonresponse rates even if the group surveyed is

representative, the sample may be a very skewed sample. If a sample reveals a surprising result, it

may be an artifact of being nonrepresentative.

3.7.1 Examples of Nonrepresentative Samples

For example, a survey of readers of Golf Digest will provide an inconsistent estimate of the golfing

habits of all Americans, since it oversamples active golfers. (The survey might, however, provide a

consistent estimate of the golfing habits of all readers of Golf Digest. This would be of use to the

advertising department of Golf Digest. In this latter case the population of interest is viewed to be

readers of Golf Digest rather than all Americans.)

A famous example of a nonrepresentative sample is the incorrect prediction of the winner of the

1948 U.S. presidential election. Opinion polls predicted that the Republican candidate John Dewey

would defeat the incumbent Democrat, President Harry Truman. Yet Truman won convincingly.

The opinion polls were not representative for two reasons. First, the last opinion polls were taken

well before the election, so a late surge to Truman meant that they were not representative of

opinions on election day itself. Second, the opinion polls were not based on random sampling - the

interviewers were given too much discretion as to who they interviewed.

3.7.2 Weighted Mean for Survey Data

Samples obtained from government surveys and from political polling surveys are often not repre-

sentative of the population. Yet the leading national surveys can nonetheless be adjusted to provide

valid estimates of the population mean.

For example, the unemployment rate in the United States is obtained from the Current Popu-

lation Survey (CPS), a monthly survey of 60,000 households. This survey is not a simple random

sample. For example, households in smaller states are oversampled to provide more reliable state-

level data. Similarly, minority and disadvantaged populations are oversampled. And the surveyed

households are clustered geographically to reduce interview costs.

To overcome these complications, surveys such as the CPS, provide sampling weights that make

possible unbiased estimation of the population mean using a weighted mean

̄ =

P
=1P
=1

=
1


P
=1

1


P
=1



where the sample weights  are the reciprocal of the probability that the 
 individual in the

population is included in the sample. This method requires correct specification of the weights 

Most standard statistical software enables computation of the weighted mean and the standard

error of the weighted mean, provided the sample weights are known. An example is given in



50 CHAPTER 3. THE SAMPLE MEAN

exercise 19 of Chapter 12. Statistical software for survey data allows for additional complications

of surveys.

3.8 Computer Generation of Random Samples

How are random samples generated on a computer?

The starting point is a uniform random number generator that creates values between 0

and 1 such that any value between 0 and 1 is equally likely and successive values appear to be

independent of each other.

These random numbers are more properly called pseudo random numbers, as a deterministic

rule is used to create the sequence of numbers 1 2 . For example, one method given value 


value  specifies the next value to be +1 = (69069 + 1234567)mod 2
32, where mod  is the

remainder when  is divided by . Remarkably this rule leads to +1 appearing to be unrelated

to  and to the different possible values of  between 0 and 1 being equally likely.

The sequence depends on the starting value 0, called the seed. For example, we might set the

seed equal to 10101. When using random numbers it is always good practice to set the seed, as

then results can be replicated exactly in future simulations.

3.8.1 Generating a Single Random Sample in a Statistical Package

In the coin toss example in Chapter 3.3 we did not actually toss a coin many times. Instead to

simulate 30 coin tosses, say, we draw 30 uniform random numbers and let the result be heads if the

uniform random number exceeds 05, and tails if the uniform random number is less than 0.5.

Similarly for the Census example, if the uniform random number is between 0 and 1 , where
 = 50,169,452, we choose the first person. If the uniform random number is between 1 and

2 we choose the second person, and so on.

The uniform random numbers are also the basis for making draws from commonly-used distri-

butions such as the binomial, Poisson and normal distributions. The following algorithm is used.

Remark 8 To make  draws of the random variable  do the following: (1) set the sample size

to ; (2) set the seed; and (3) make  draws of  from its specified distribution.

For example, suppose we want to make 500 draws of variables  and . Variable  is a draw

from the uniform distribution on (3 9), so any value between 3 and 9 is equally likely. Equivalently
variable  equals 3 + 6 where  is a draw from the uniform distribution on (0 1). Variable  is a
draw from the (5 22) distribution. Equivalently variable  equals 5 + 2 where  is a draw from
the standard normal distribution.

In Stata give commands (1) set obs 100; (2) set seed 10101; (3) generate x=runiform(3,9);

and (4) generate x=rnormal(5,2).

In R give the commands (1) set.seed(10101); (2) x=runif(100,min=3,max=9); and (3)

y=rnorm(100,5,2).

In Gretl give the commands (1) nulldata 100; (2) set seed 10101; (3) genr x=uniform(3,9);

and (4) genr y=normal(5,2).
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In Eviews give commands (1) wfcreate mywf 100; (2) rndseed 10101; (3) series x=3+6*rnd;

and (4) series y=5+2*rnd.

Note that different packages will yield different results as they use different algorithms.

3.8.2 Computer Generation of Many Samples

The examples in Chapters 3.3 and 3.5 obtain the sample mean from each of many samples. This re-

quires commands that allow repeated operations and saving the results of these repeated operations

for subsequent analysis. These more advanced commands vary with statistical package.

The following Stata code obtains 400 sample means in the coin toss example of Chapter 3.3, as

well as standard deviations and the sample size.

program onesample, rclass

drop _all

set obs 30

generate u = runiform()

generate x = u > 0.5

summarize x

return scalar xbar = r(mean)

return scalar sd = r(sd)

return scalar nobs = r(N)

end

simulate xbar=r(xbar) stdev=r(sd) nobs=r(nobs), seed(10101) reps(400): onesample

summarize

The program onesample simulates each of 30 fair coin tosses by first drawing a uniform number

u between 0 and 1 and setting variable random x to 1 if u0.5 and to 0 if u=0.5. Some key

results from command summarize are stored in r(), including ̄ in r(mean),  in r(sd), 2 in

r(Var), and  in r(N). The return scalar commands generate variables that will be returned to

command simulate. For example, the sample mean of the 30 x’s will be returned in variable xbar.

The command simulate runs the program onesample 400 times (the value in reps()), leading to

400 observations on variables xbar, stdev and nobs. The option seed(10101) provides a starting

value for the initial draw of u, leading to the same results each time this code is run.

The following R code obtains 400 sample means in the coin toss example of Chapter 3.3, as well

as standard deviations.

set.seed(10101)

result.mean=array(dim=400)

result.stdev=array(dim=400)

for(i in 1:400){

x=rbinom(30,1,0.5)

result.mean[i]=mean(x)

result.stdev[i]=sd(x)

}
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mean(result.mean)

sd(result.mean)

summary(result.mean)

The R code obtains 30 fair coin tosses by using the command rbinom(30,1,0.5) that 30 times

makes 1 draw of a random variable equal to one with probability 0.5 (and hence equal to zero with

probability 0.5). The for loop repeats this 400 times, and the resulting means for each sample

are stored in the array result.mean and the standard deviations in the array result.stdev. The

set.seed(10101) command provides a starting value for the initial draw of x, leading to the same

results each time this code is run.

The following Gretl code obtains 400 sample means in the coin toss example of Chapter 3.3, as

well as standard deviations.

# Mean of 400 coin toss samples each of size 30

nulldata 30

set seed 10101

loop 400 --progressive

genr u = uniform(0,1)

genr x = (u > 0.5)

scalar tosses = nobs(x)

scalar mean = mean(x)

scalar stdev = sd(x)

# print out results

print tosses mean stdev

# and save results in gretl dataset

store aed03simresults.gdt tosses mean stdev

endloop

# Summarize the 400 means

clear

open aed03simresults.gdt

summary --simple

3.9 Key Concepts

1. A random variable is a variable whose value is determined by the outcome of an experiment.

2. Random variables  are denoted in upper case and realized values  are denoted in lower

case.

3. The mean  is the probability-weighted average of all values that the random variable  may

take.

4. The variance 2 is the probability-weighted average of all values that ( − )2 may take.
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5. The population standard deviation is 

6. If  has mean  and variance 2 then +  has mean +  and variance 22.

7.  = ( − ) has mean 0 and variance 1.

8. Statistical inference seeks to infer properties of the distribution of  from the sample at hand.

9. A sample of size  has observed values 1 2   that are realizations of the random

variables 12 .

10. The sample statistics, such as the sample mean, are random variables whose statistical proper-

ties are determined by those of the random variables whose realizations produced the sample.

11. In particular, the sample mean ̄ is a realization of the random variable ̄.

12. We assume that (A) E[] = , (B) Var[] = 2, and (C)  is statistically independent of

 ,  6= 

13. A simple random sample is one whose observations are independent draws from the same

distribution with  ∼ ( 2). Then assumptions A-C are satisfied.
14. Under assumptions A-C the sample mean ̄ is the realization of a random variable ̄ that

has mean equal to the population mean  and standard deviation 
√
 that gets smaller as

the sample size increases.

15. The estimated standard deviation of ̄, called the standard error of ̄, is denoted (̄).

16. Under assumptions A-C, (̄) = 
√
.

17. Under assumptions A-C the standardized random variable  = (̄ − )(
√
) is standard

normal distributed as the sample size goes to infinity. For large  a good approximation is

that ̄ ∼ (, 2)

18. A parameter is a constant that determines in part the distribution of . An estimator is a

method for estimating a parameter. An estimate is the particular value obtained from the

sample.

19. An unbiased estimator of a parameter is a statistic whose expected value equals the parameter.

20. A consistent estimator of a parameter is a statistic that is almost certainly arbitrarily close

to the parameter, as the sample size gets very large.

21. A best estimator or efficient estimator has minimum variance among the class of consistent

estimators (or the class of unbiased estimators).

22. Under assumptions A-C, the sample mean is unbiased and consistent. Furthermore it is the

best estimator in the special cases that the distribution of  is normal, Bernoulli, binomial,

Poisson or exponential.



54 CHAPTER 3. THE SAMPLE MEAN

23. Adjustment to methods may be needed if the sample is not a simple random sample.

24. Key Terms: random variable; mean; variance; standard deviation; sample; assumptions A-C;

simple random sample; sample mean; sample standard deviation; standard error of the sample

mean; central limit theorem; normal distribution; standard normal distribution; asymptoti-

cally normal; parameter; estimate; estimator; unbiased; consistent; best estimator; minimum

variance; nonrandom samples; weighted mean; random number generator.

3.10 Exercises

1. Let  denote annual health costs for an individual and suppose  = 1000 with probability
08 and  = 5000 with probability 02.

(a) Obtain  = E[] from first principles.

(b) Obtain 2 = E[( − )2] from first principles.

(c) Hence find the standard deviation of .

2. Repeat the previous exercise if  = 0 with probability 05,  = 2000 with probability 03
and  = 12000 with probability 02.

3. Suppose  has mean 5 and variance 4. For each of the following give the mean and variance.

(a)  + 3. (b) 2. (c) 2 + 3. (d) ( − 5)2.

4. Suppose  has mean  and variance 2. For each of the following give the mean and variance.

(a)  = ( − ). (b)  = . (c)  = ( − ).

5. Let ̄ be the mean of a simple random sample of size 100 from a random variable that is

distributed with mean 200, variance 400, and a distribution that is not the normal distribution.

(a) Give the mean of ̄.

(b) Give the variance and standard deviation of ̄.

(c) Is ̄ likely to be approximately normally distributed? Explain.

6. Repeat the previous exercise for a simple random sample of size 400 from a random variable

that is distributed with mean 400, variance 200.
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7. Use a computer and a random number generator to obtain 1000 random numbers between 0

and 1, setting the seed to 10101. These are generated in such a way that they can be viewed

as independent draws of the uniform random variable  with mean  = 05 and variance
2 = 112.

(a) Are the sample mean and sample variance approximately equal to  and 2?

(b) How many of the 1,000 random numbers do you expect to lie between 0.0 and 0.1, and

between 0.1 and 0.2, etc.? Hint: Any value between 0 and 1 is equally likely.

(c) Plot a histogram of the random numbers drawn, with starting value 0, 10 bins, and

frequency on the vertical axis. Do you (approximately) get what you expected from part

(b).

(d) Give a scatter plot of the random numbers against the observation number. Do they

appear to be randomly draws between 0 and 1?

(e) Give a line plot of the random number against observation number for the first 50

observations. Do consecutive random numbers appear to be related to each other, or do

they appear to be independent?

8. For random sampling from  ∼ ( 2) state which of the following statements are true

(a) ̄ = . (b) ̄ has population mean . (c) ̄ has population variance 2.

9. Consider simple random sampling from  ∼ ( 2). State what happens to the size of E[̄],
Var[̄] and the standard deviation of ̄ when the sample size is made four times as large.

10. For simple random sampling from  ∼ ( 2) state which of the following statements are
true

(a) E[̄] = E[]. (b) Var[̄] =Var[]. (c) ̄ has standard deviation  .

11. Let  = 1 with Pr[ = 1] = 16 and  = 0 with Pr[ = 0] = 56. (One way this would
arise is if we tossed a six-sided die and set  = 1 if a five, say is obtained, and let  = 0
otherwise.)

(a) Obtain  = E[] from first principles.

(b) Obtain 2 = E[( − )2] from first principles.

(c) Now use a computer and a random number generator to obtain a sample of size 100 for

this example. Hint: A random number is less than 16 with probability 16.

(d) Compare the mean ̄ and variance 2 of this sample to your answers in parts a-b.

(e) Obtain the histogram. Does  appear to be normally distributed?
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12. The preceding computer experiment was run 400 times, yielding 400 samples of size 100. The

sample mean ̄ for each sample is given in dataset DIETOSS.

(a) Obtain the descriptive statistics for the 400 values of ̄. Are the mean and standard

deviation what you expect? Explain.

(b) Obtain the histogram (or better still the kernel density estimate). Is this what you

expect? Explain.

13. Suppose  takes values 1, 2 and 3 with probabilities of, respectively, 0.4, 0.2 and 0.4.

(a) Obtain  = [] from first principles.

(b) Obtain 2 = E[( − )2] from first principles.

(c) Now use a computer and a random number generator to obtain a sample of size 1,000

for this example. Hint: Let  be the random number. Then  = 1 if   04,  = 2 if
04 ≤   06, and  = 3 if  ≥ 06.

(d) Compare the mean and standard deviation of this sample to your answers in parts a-b.

14. The preceding computer experiment was run 400 times, obtaining 400 samples of size 100.

The sample mean ̄ for each sample is given in dataset ONETWOTHREE.

(a) Obtain the descriptive statistics for ̄. Are the mean and standard deviation what you

expect? Explain.

(b) Obtain the histogram (or better still the kernel density estimate). Is this what you

expect? Explain.

15. An insurance company offers insurance to 10,000 people with independent loss distributions

that have mean $5,000 and standard deviation $20,000. Let ̄ = 1
10000

P10000
=1  denote the

average loss per individual.

(a) Find the mean and standard deviation of ̄.

(b) Suppose the insurance company sells insurance that provides complete coverage for

$5,400. For simplicity suppose that the insurance company has no costs aside from

paying out any insurance claims. Is the insurance company likely to make a loss? Ex-

plain your answer. Hint: By the central limit theorem ̄ is normally distributed.

16. Repeat the previous exercise when the insurance pool is 2,500 people with independent loss

distributions that have mean $10,000 and standard deviation $30,000 with ̄ = 1
2500

P2500
=1

.
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17. The dataset TDIST4 has the sample means ̄ and corresponding standard standard deviations

 from 1000 random samples of size 4 where  ∼ (100 162).

(a) Obtain the descriptive statistics for ̄. Are the mean and standard deviation what you

expect? Explain.

(b) Obtain the descriptive statistics for (̄) = 
√
 for these data. Is the mean what you

expect? Explain.

(c) Compute  = (̄− 100)8. Explain why  is standard normal distributed.
(d) Obtain summary statistics for , a histogram and a kernel density estimate.

(e) For these data does  appear to be standard normally distributed? Explain using results

in (d).

18. The dataset TDIST25 has the sample means ̄ and and corresponding standard standard

deviations  from 1000 random samples of size 25 where  ∼ (200 502).

(a) Obtain the descriptive statistics for ̄. Are the mean and standard deviation what you

expect? Explain.

(b) Obtain the descriptive statistics for (̄) for these data. Is the mean what you expect?
Explain.

(c) Compute  = (̄− 200)10. Explain why  is standard normal distributed.
(d) Obtain summary statistics for , a histogram and a kernel density estimate.

(e) For these data does  appear to be standard normally distributed? Explain using results

in (d).

19. State whether the following samples are likely to be representative or nonrepresentative of

the population.

(a) Every twentieth person is sampled. All people respond.

(b) Every twentieth person is sampled. But only ten percent of those sampled respond.

(c) Every person is sampled. Only ten percent of those sampled respond. We question every

twentieth person who did respond.

20. Suppose we take a simple random sample from  ∼ ( 2).

(a) We estimate  by 1, the first value of  in the sample. Is this estimator unbiased for

? Is this estimator consistent for ? Explain.

(b) We estimate  by ̄ + 1

. Is this estimator unbiased for ? Is this estimator consistent

for ? Explain.

(c) Now suppose  ∼ ( 2) and we estimate  by an estimator e that has E[e] =  and

Var[e] = 22. Is this estimator a best unbiased estimator for ? Explain.
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21. The dataset AUSREGWEALTH has data on average net worth of households () in thou-
sands of dollars in 517 regions in Australia in 2003-04. Calculate the weighted mean where

weight by household size as follows. This is an example of weighting by frequency weights.

(a) Let  equal number of households in each region. Compute
P

=1.

(b) Generate the variable  and hence the weighted mean ̄ =
P

=1
P

=1.

(c) Compare the weighted mean to the unweighted mean.

(d) Calculate the weighted variance as
P

=1( − ̄)
2
P

=1.

(e) Compare the weighted standard deviation to the unweighted standard deviation.

(f) If your software computes weighted means and standard deviation, reproduce these

results using your software.

22. Repeat the previous exercise for the annual income per taxpayer (in dollars).

23. Repeat exercise 17 except generate the 1,000 sample means yourself. For Stata, use the

Stata code in Chapter 3.8 except replace set obs 30 with set obs 4, replace commands

generate u=runiform() and generate x=u0.5 with generate x=rnormal(100,16), and

replace reps(400) with reps(1000). For R use the R code in Chapter 3.8 except replace

400 with 1000 and replace x=rbinom(30,1,0.5) with x=rnorm(4,100,16).

24. Repeat exercise 18 except generate the 1,000 sample means yourself. For Stata, use the Stata

code in Chapter 3.8 except replace set obs 30 with set obs 25 and replace commands

generate u=runiform() and generate x=u0.5 with generate x=rnormal(200,50), and

replace reps(400) with reps(1000). For R use the R code in Chapter 3.8 except replace

400 with 1000 and replace x=rbinom(30,1,0.5) with x=rnorm(25,200,50).



Chapter 4

Statistical Inference for the Mean

The sample mean ̄ is a random outcome — different samples lead to a different value of the sample

mean. To deal with this randomness, the sample at hand is viewed as being one from sampling

observations on a random variable  that has mean (or expected value) denoted by . The goal

is to make inference on  given the observed sample mean ̄. For example, is the view that

mean earnings in the population equal $40,000, say, consistent with sample mean earnings equal to

$41,413?

This chapter analyzes inference based on the sample mean. It presents the fundamentals of

statistical inference, notably confidence intervals and hypothesis tests. Confidence intervals give a

range of plausible values of  given the sample. Hypothesis tests are used to determine whether or

not a specified value of  or range of values of  is plausible, given the sample.

While the focus is on statistical inference for the mean, these concepts carry over to other

univariate statistics, such as the median, and to regression, the subject of most of this book. A

good understanding of statistical inference is essential as it lies at the heart of analysis of economics

data.

The chapter continues directly from the previous chapter. For readers who bypassed the details

in Chapter 3, the key results for statistical inference on the mean are presented in Chapter 3.4.

4.1 Example: Mean Annual Earnings

The following example presents the methods of statistical inference that will be explained in this

chapter.

Dataset EARNINGS introduced in Chapter 2 has data on individual annual earnings for a

sample of 30 year-old full-time workers in 2010.

Table 4.1 presents several key sample statistics that are generated by a descriptive statistics

command, such as the Stata summarize command.

The sample mean ̄ = 4141269 and the sample standard deviation  = 2552705.

The population considered is all 30 year-old female full-time workers in 2010 in the United

States, with unknown population mean earnings denoted . We wish to make inference about the

59
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Table 4.1: Summary statistics: Annual earnings of female full-time workers aged 30 in 2010 (n=171).

Variable Obs Mean Std. Dev. Min Max

Earnings 41412.69 25527.05 1050 172000

mean , using data from the sample which is a simple random sample from the population. The

standard tools of inference are confidence intervals and hypothesis tests.

Table 4.2 presents key results for inference on the mean produced by a command such as the

Stata mean command.

Table 4.2: Confidence interval: Annual earnings.

Variable Mean Stand. Error 95% Conf. Interval

Earnings 41412.69 1952.10 37559.21 45266.17

The entry Mean is the sample mean ̄ and is the commonly-used estimate of . Here ̄ =
4141269, so the estimate of mean earnings in the population of all 30 year-old female full-time
workers in 2010 is $41,413.

The entry Stand. Error is the standard error of the sample mean, where standard error

is the statistical term for estimated standard deviation. This measures the precision of the sample

mean ̄ as an estimate of . A smaller standard error means greater precision of ̄ as an estimate of

. Here the standard error of the sample mean equals $1,952. This is much smaller than the sample

standard deviation of $25,227 for just one observation, because averaging reduces the variability. In

fact, under simple random sampling the standard error equals the sample standard deviation of a

single observation divided by the square root of the sample size. Here 
√
 = 25527

√
171 = 1952.

The entry 95% Conf. Interval gives a 95% confidence interval that provides a range of values

that includes the true (unknown) population mean  with 95% confidence. Here the 95% confidence

interval for population mean earnings is ($37,559, $45,266).

An hypothesis test is a test of whether or not the data support a hypothesized value or range

of values for the population mean . As an example we test the hypothesis that  = 40000 against
the alternative that  6= 40000. A command such as the Stata command ttest earnings=40000
produces the following output.

Some of the output in Table 4.3 repeats that from the command mean earnings. Additionally

it provides t = 0.7237, called the  statistic, degrees of freedom = 170, and the results of three

related hypothesis tests. For test of  = 40000 against  6= 40000 the middle output with Pr(|T| 
|t|) = 0.4703 is relevant. This value of 0.4703 is called the -value of the test. It is common to test
at significance level 0.05, in which case we would not reject the hypothesis that  = 40000 since
the p-value 04703  005.

This example presents the key methods for statistical inference on the population mean based

on the sample mean. The remainder of this chapter provides complete explanation.
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Table 4.3: Hypothesis test: Annual earnings have mean equal to 40000.

Variable Obs Mean Stand. Error Stand. Dev. 95% Conf. Interval

Earnings 171 41412.69 1952.03 25527.05 37559.21 45266.17

mean = mean(earnings) t = 0.7237

Ho: mean = 40000 degrees of freedom = 170

Ha: mean  40000 Ha: mean != 40000 Ha: mean  40000

Pr(T  t) = 0.7649 Pr(|T|  |t|) = 0.4703 Pr(T  t) = 0.2351

4.2 t Statistic and t Distribution

Interest lies in estimating the mean , and we use the sample mean as the estimator. Chapter 3

detailed properties of the sample mean and why it is a good estimator of .

Now we wish to construct confidence intervals on , and perform hypothesis tests on , which

requires knowledge of the distribution of the sample mean. As detailed in Chapter 3 and repeated

below, under certain assumptions the sample mean is normally distributed with mean  and variance

2; see Chapter 3.4.7 for a summary.

However, to immediately use this result requires knowledge of 2. In practice this is not

known, so we instead estimate it by 2 where  is the sample standard deviation of  Since  is

an estimate this adds noise that leads to inference based on the  distribution, a distribution that

has fatter tails than the standard normal. In this section we focus on how to obtain probabilities

for the  distribution.

4.2.1 Normal distribution

A sample of size  has observed values 1 2   that are realizations of the random variables

12 . Then ̄ is the realization of the random variable ̄ = (1 + · · ·). The

properties of ̄ depend on the properties of 12 .

We assume a simple random sample so that the underlying random variables 

A. have common mean : E[] =  for all 

B. have common variance 2: Var[] = 2 for all 

C. are statistically independent:  is statistically independent of    6= 

Under these assumptions, the central limit theorem states that if additionally the sample size is

large then ̄ is normally distributed, regardless of the actual distribution of, and the standardized

random variable

 =
̄ − 


√

∼ (0, 1) as →∞
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4.2.2 The  Statistic

In practice the sample standard deviation  is unknown and we need to replace it by the standard

deviation of . Then the distribution of the sample mean ̄ is defined in terms of the random

variable

 =
̄ − 


√



where 2 = 1
−1

P
=1( − ̄)2

The distribution of the random variable  is in general complicated. The standard approxima-

tion is to suppose that

 ∼  (− 1)
where  (− 1) denotes the  distribution with (− 1) degrees of freedom.

Different degrees of freedom correspond to different  distributions just as, for example, different

means  would correspond to different normal distributions. The term degrees of freedom is

used because the relationship ̄ = 1


P
=1 implies that only ( − 1) terms in the sum are free

to vary.

The reason for using the  (− 1) distribution is that  can be shown to be exactly  (− 1)
distributed under assumptions A-C and the additional assumption that  is normally distributed.

When  is not normally distributed a common rule-of-thumb is that the  (− 1) distribution is
generally a good approximation if   30.

We observe a single sample with sample mean ̄, sample standard deviation , sample standard

error (̄) = 
√
, and corresponding sample value of the  statistic. So the sample  statistic is

a single realization of a  (− 1) distributed random variable. For simplicity we write

 =
̄− 

(̄)
∼  (− 1)

A common rule-of-thumb is that the approximation will be a good one if   30.

Remark 9 From a simple random sample 1   calculate the sample mean ̄, the sample

standard deviation  and the standard error of ̄, (̄) = 
√
. The t statistic

 =
̄− 

(̄)
=

̄− 


√


is a realization of a random variable that is approximately  ( − 1) distributed, where  ( − 1)
denotes the t distribution with − 1 degrees of freedom.

To form the  statistic the only summary statistics of the sample needed are the sample mean ̄

and the sample standard deviation . Additionally the  statistic depends on the population mean

, which is unknown. The knowledge that the  statistic is  ( − 1) distributed is used to make
statistical inference on , as detailed in subsequent sections of this chapter.
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Figure 4.1: Student’s  distribution:  (4) and  (30) compared to the standard normal.

4.2.3 The  Distribution

A -distributed random variable is a continuous random variable. In that case probabilities are given

by the area under the probability density function; see Appendix B.1. For example, Pr[    ]
is the area under the curve from  to . The formula for the probability density function is complex

and is not given here. Instead the properties of the  distribution are outlined.

The probability density function for the  distribution, or Student’s  distribution, is a

bell-shaped curve centered on zero, and symmetric about zero, that is a slightly squashed version

of the standard normal. It has one parameter, denoted  here, called the degrees of freedom.

The  distribution with  degrees of freedom, denoted  (), has mean 0, provided   1, and
variance ( − 2), provided   2. The standard normal has the same mean of 0, but smaller
variance of 1.

Figure 4.1 presents, respectively, the  (4) and  (30) probability density functions and compares
them in each case to the standard normal. The  distribution has bell-shaped curve similar to the

standard normal distribution, except it has fatter tails reflecting increased randomness due to

replacing the constant  by the random variable . The  distribution approaches the standard

normal as  gets larger and the difference disappears as  →∞.

4.2.4 Probabilities for the  Distribution

There is no simple formula for probabilities for the  distribution; instead computation requires

advanced numerical methods. Until recently statisticians needed to refer to published tables such

as those given in Appendix E. Now one can directly use a computer.

For example, to compute Pr[30  2], the probability that a  (30) random variable exceeds 2,
one can use the Stata function ttail(30,2) which returns a probability of 00273.

From the second panel of Figure 4.1 there is seemingly little difference between the  (30) and
the standard normal distributions. But there is still an appreciable difference in the tails of these
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distributions, with the  distribution having fatter tails. In fact Pr[|30|  2] = 00546. This is
approximately 20% larger than Pr[||  2] = 00455 for  standard normal distributed.

Such differences can be large enough to matter for confidence intervals and hypothesis tests

because they use tail probabilities. For this reason statistical packages and this book base inference

on the  distribution rather than the standard normal distribution.

As the degrees of freedom  →∞, the difference disappears since the  distribution then collapses
to the standard normal distribution. For example, for 1000 ∼  (1000) we have Pr[|1000|  2] =
00458, very close to 00455 for the standard normal.

Remark 10 The  distribution with  degrees of freedom, denoted  (), is like a squashed version
of the standard normal distribution with fatter tails. As  → ∞ the t distribution goes to the

standard normal.

4.2.5 Inverse Probabilities for the  Distribution

In some situations this computation needs to be inverted. The probability is set and we wish to

calculate the associated value of  that gives this probability.

For example we may wish to find the value  such that the probability that a  (170) distributed
random variable exceeds  is equal to 005. Then, for example, one can use the Stata function
invttail(170,.05) which returns a value of 16539. We have that  = 16539 solves Pr[170  ] =
005. Appendix A of this book includes corresponding commands for various statistical packages
other than Stata.

More generally the desired area is denoted , the greek letter “alpha”, and the inverse prob-

ability, called a critical value,  =  satisfies

Pr[  ] = 

In words, the inverse probability or critical value  is that value such that a  () distributed
random variable exceeds  with probability . Even more simply, the area under the curve

to the right of  equals .

The left panel of Figure 4.2 presents the example Pr[170  1654] = 005. Then  = 005 is
the shaded area in the right tail, and the inverse probability  = 17005 = 1654 is given on the
horizontal axis.

Definition 9 The inverse probability or critical value  =  is that value for which a  ()
distributed random variable exceeds  with probability , i.e. Pr[  ] = .

Sometimes we want the combined area in left and right tails to equal . Given the symmetry

about 0 of the  distribution we have

Pr[||  2] = Pr[  −2] + Pr[  2] = 2 + 2 = 

The combined area under the curve to the left of −2 and to the right of 2 equals
.
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Figure 4.2: Student’s t distribution: Critical values  and 2 for  = 170 and  = 005.

For example, Pr[170  1974] = 0025, so 170025 = 1974. Combining both tails of the 

distribution it follows that Pr[|170|  1974] = 005.
The right panel of Figure 4.2 presents the example Pr[|170|  1974] = 005. Then the shaded

area in each tail is 0025,  = 005 is the combined area in the two tails, and the critical value
 = 170025 = 1974 is given on the horizontal axis.

Definition 10 A  distributed random variable with  degrees of freedom exceeds in absolute

value the critical value 2 with probability , i.e. Pr[||  2] = .

Note that some books define 17005, for example, to be the 05 quantile or 5
 percentile, so the

area in the left tail of the distribution is 05. Throughout this book, however, 17005 is that value
for which the area in the right tail of the distribution is 05. This makes no difference in practice
due to the symmetry of the  distribution about zero, for example, 17095 = −17005.

4.3 Confidence Intervals

Different samples will lead to different estimates of the population mean. A confidence interval for

an unknown parameter, such as the population mean, gives a range of values that the parameter

lies in with a certain “confidence level”, defined next.

4.3.1 95% Confidence Interval

A confidence interval for the unknown population mean  is a range of values that might contain

 with a pre-specified frequency. For example, a 95% confidence interval for  is a range of values

that may contain  with 95% frequency, i.e. if we had infinitely many samples and constructed

infinitely many confidence intervals then 95% of these confidence intervals will include the true

value of .
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Under assumptions 1-3 we have

Definition 11 A 95 percent confidence interval for the population mean is

̄± −1025 × (̄)

where ̄ is the sample mean; −1025 is that value (called a critical value) such that a  (− 1)
distributed random variable exceeds it in absolute value with probability 0.025; and (̄) = 

√


is the standard error of the sample mean.

For derivation see Chapter 4.3.3. The confidence interval is centered around ̄, the estimate of

, the sample mean ̄, and is symmetric. The use of the  (− 1) distribution is exact under the
additional assumption that  is normally distributed; otherwise it is a commonly-used approxima-

tion. The specific value −1025 is used since with area 0.025 in each tail the area in the center of
the  (− 1) distribution is 0.95, corresponding to 95% confidence.

Intuitively the confidence interval is narrower the more precise is our estimate of . This is

indeed the case, as from the formula the confidence interval is narrower the smaller is the standard

error of ̄. In particular, we have the following result.

Remark 11 The confidence interval narrows as the sample size gets larger, since larger samples

lead to a smaller standard error.

4.3.2 Example: Mean Annual Earnings

For the female annual earnings data in dataset EARNINGS, introduced in Chapter 2,  = 171 ,
̄ = 41413,  = 25527, and (̄) = 

√
 = 1952. From 170 tables, 170025 = 1974.

It follows that a 95% confidence interval for population mean earnings of thirty year-old female

full-time workers is

̄± −1025 × (̄) = 41413± 1974× 1952 = 41413± 3853 = (37560, 45266)

This is the 95% confidence interval that was given in Chapter 4.1.

4.3.3 Derivation of a 95% Confidence Interval

We derive a 95% confidence interval from first principles. For simplicity consider a sample with

 = 61, in which case − 1 = 60 and 60025 = 20003. Thus

Pr[−20003  60  20003] = 095

which we round to Pr[−2    2] = 095. Substituting  = ̄−

√

it follows that

Pr

∙
−2  ̄ − 


√

 2

¸
= 095
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This interval can be converted to an interval that is centered on  as follows

Pr
h
−2  ̄−


√

 2

i
= 095

⇒ Pr
£−2√  ̄ −   2

√

¤
= 095 multiplying all terms by 

√


⇒ Pr
£−̄ − 2√  −  −̄ + 2

√

¤
= 095 subtracting ̄ from all terms

⇒ Pr
£
̄ + 2

√
    ̄ − 2√¤ = 095 multiplying by − 1 reverses inequalities.

Re-ordering the final inequality yields

Pr
£
̄ − 2× 

√
    ̄ + 2× 

√

¤
= 095

Replacing random variables by their observed values, the interval (̄− 2× 
√
 ̄+ 2× 

√
) is

called a 95% confidence interval for .

More generally with sample size  the critical value is −1;025. Then a 95% confidence interval

is (̄− −1025 × (̄) ̄+ −1025 × (̄)).

4.3.4 What Level of Confidence?

Ideally there is both a high level of confidence and a narrow confidence interval. For example,

having 95% confidence that  lies between 20 and 40 is preferred to having only 90% confidence

that  lies between 20 and 40. And having 95% confidence that  lies between 20 and 40 is preferred
to having 95% confidence that  lies in the broader range of 10 to 50.

Unfortunately there is a trade-off between these two considerations. In order to have greater

confidence the confidence interval needs to widen. For example, to be 100% confident we can only

say that  lies in the range (−∞∞).
So what value of confidence should be used? There is no best value in general, but it is most

common to use a 95% confidence interval.

More generally, we consider confidence intervals with confidence level 100(1− )%, in which
case the critical value is −12 since the area in each tail is then 2 leaving area 1 −  in the

center of the  (− 1) distribution.
Definition 12 A 100(1−α) percent confidence interval for the population mean is

̄± −12 × (̄)

The value  = 005 corresponds to a 95% confidence interval since 100(1−05) = 100×095 = 95.
The other common choices are to use narrower 90% confidence intervals, with  = 010, and wider
99% confidence intervals with  = 001.

Table 4.4 presents the critical value 2 for various confidence levels, corresponding to different

values of , and for selected different numbers of observations, corresponding to different values of

 =  − 1. The value 2 decreases as the sample size increases. For 95% confidence intervals,

presented in bold, the  value is 2042 for the 30 distribution falling to 1960 for the ∞ distribution

which is equivalent to the standard normal distribution. A detailed table for the  distribution is

provided in Table E.2 in Appendix E.

In typical econometrics applications the sample size   30, in which case from Table 4.4 the

critical value −1025 approximately equals 2. This leads to the following.
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Table 4.4: Student’s t distribution: Critical values for various degrees of freedom and confidence

levels.

Confidence Level 100(1−) 90% 95% 99%

Area in both tails  0.10 0.05 0.01

Area in single tail 2 0.05 0.025 0.005

t value for  = 10 102 1.812 2.228 3.169

t value for  = 30 302 1.697 2.042 2.750

t value for  = 100 1002 1.660 1.984 2.626

t value for  =∞ ∞2 1.645 1.960 2.576

standard normal value 2 1.645 1.960 2.576

Remark 12 It is most common, though arbitrary, to use a 95% confidence interval. An approx-

imate 95% confidence interval for the population mean is a two standard error interval:

the sample mean plus or minus two times the standard error.

This is a useful guide. And it makes clear that if we are willing to tolerate an error range of plus

or minus two standard errors, then a good choice of the confidence level is 95%. In any published

work or in assignments, however, use the more precise interval ̄± −1025 × (̄).
Confidence intervals at different levels of confidence are easily obtained using a statistical pack-

age. For example, a 90% confidence interval for earnings can be obtained using the Stata command

mean earnings, level(90).

4.3.5 Interpretation of Confidence Intervals

Interpretation of confidence intervals is conceptually difficult. With a given sample we can only

form one confidence interval, which will either correctly include the true unknown mean  or not

include . A 95% confidence interval is constructed so that it includes  with probability 0.95.

To understand this interpretation it is necessary to imagine that there are many separate samples

of the population, each of size  = 171 in this example. From each sample we form a 95% confidence
interval. Then we expect that on average 95% of such confidence intervals will include the true

(unknown) mean .

For the 1880 Census example in Chapter 3.5 we know  = 2413. Further analysis of the 100
samples of size 25 summarized in dataset CENSUSAGEMEANS yields a 95% confidence interval

(19.29, 36.39) for the first sample, (12.79, 26.00) for the second sample, and so on. In total 91

of the 100 samples had 95% confidence intervals that included  = 2413. For example, the 20

sample had 95% confidence interval (7.70, 22.38) that does not include  = 2413. In theory we
expect 95% of the 95% confidence intervals to include . The reason 91% rather than 95% included

 reflects randomness with just 100 confidence intervals, and that the  (24) distribution for the 
statistic is not exact for these right-skewed data. If we had obtained one million 95% confidence

intervals, say, and the  statistic was exactly  (24) distributed, then very close to 95% of these

intervals would include . Similarly, for the coin toss example in Chapter 3.3, 388 of the 400 95%

confidence intervals, or 97%, included the true parameter value  = 05.
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As these examples demonstrate, a confidence interval will sometimes fail to include the popu-

lation mean , due to the randomness inherent in sampling. A 95 percent confidence interval has

the property that if we were able to obtain many separate random samples, then 95 percent of the

resulting confidence intervals will include the population mean , and 5 percent will not.

In fact we have only one sample, and we say that the calculated 95 percent confidence interval

from this sample includes the true population mean  with probability 0.95. This probabilistic

statement refers to the confidence interval, which is random, and not to  which is fixed. It

is wrong to instead interpret this confidence interval as meaning that with probability 095 the
population mean  lies inside ($37,560, $45,266) and with probability 005 it lies outside this range.

Remark 13 A calculated 95 percent confidence interval for the population mean is an interval that

if constructed for each of an infinite number of samples will include the true population mean 

95% of the time (and will not include  5% of the time).

4.4 Two-Sided Hypothesis Tests

4.4.1 Null and Alternative Hypotheses

The particular hypothesis under test is called the null hypothesis and is denoted 0. The

alternative to the hypothesis test is called the alternative hypothesis and is denoted .

Here we consider test of whether  takes a particular value. Let ∗ denote this value. Then
the null hypothesis is 0 :  = ∗, and the alternative hypothesis is  :  6= ∗. Because the
alternative hypothesis includes both   ∗ and   ∗ the test is called a two-sided test.

For example, consider the claim that population mean earnings equal $40,000. To test this

claim we test 0 :  = 40000 against  :  6= 40000.
Definition 13 A two-sided test or two-tailed test for the mean  is a test of the null hypothesis

0 :  = ∗

where ∗ is a specified value for , against the alternative hypothesis

 :  6= ∗

4.4.2 Significance Level of a Test

The result of a test is to either reject or not reject the null hypothesis.

This decision made may be in error. In particular, we may reject the null hypothesis when in

fact it was true. This type of error is called a type I error.

For example, suppose the null hypothesis is that someone is innocent. Then a type I error

is made if we reject the null and find the person guilty, when in fact the person was innocent.

Similarly if the null hypothesis is that a person does not have a disease, then a type I error is to

find disease when in fact none is present.

In the earnings example a type I error occurs if we reject0 :  = 40000 when in fact  = 40000.
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Definition 14 A type I error occurs if 0 is rejected when 0 is true.

Ideally the probability of making a type I error is small. The following terminology is used.

Definition 15 The significance level of a test or test size, denoted , is the pre-specified max-

imum probability of a type I error that will be tolerated.

The level of statistical significance to use is discussed in some length in a later section. It is

most common to tolerate up to a 5% chance of making a type I error, in which case  = 005.

Whatever the choice of , we reject 0 at significance level  if the probability of making a

type I error is less than 005, and do not reject 0 otherwise.

Note that if we do not reject the null hypothesis then we simply say that we “fail to reject the

null hypothesis.” We do not say that we “accept the null hypothesis.” The reason for doing so is

that there are other null hypotheses that we also fail to reject. For example, in the earnings example

we show below that we do not reject 0 :  = 40000. But for these data other null hypotheses,
such as 0 :  = 41000, will also be not rejected at level 005.

4.4.3 The t Statistic

The obvious decision rule is to reject the hypothesis that the mean equals ∗ if the sample mean
̄ is far from ∗. For example, we are much more likely to reject 0 :  = 40000 if ̄ = 80000 than
if, say, ̄ = 45000. So we form a test based on the difference (̄− ∗).

Furthermore, the more precise ̄ is as an estimate of , the more likely we are to reject 0 for

a given size of (̄− ∗). The test statistic we use therefore normalizes by the standard error of ̄.
We therefore use the  statistic

 =
̄− ∗

(̄)


This has the additional advantage that we know  is the realization of a random variable that is

 (− 1) distributed.

Remark 14 The  statistic for test of 0 :  = ∗ against  :  6= ∗ is  = (̄ − ∗)(̄).
Under 0 :  = ∗, and assuming simple random sampling,  is the realization of a random variable
that is approximately  (− 1) distributed.

For the data on earnings of 30 year-old female full-time workers in 2010 in the United States,

 = 171, ̄ = 41413 and (̄) = 1952.

For test of 0 :  = 40000, the  statistic is therefore

 =
̄− 40000
(̄)

=
41413− 40000

1952
= 0724

This is the value t=0.7237 obtained in Chapter 4.1. Under the null hypothesis, that  = 40000,
the  statistic is a draw from the 170 distribution, since − 1 = 170.
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Two−sided test: critical value approach

Figure 4.3: Two-sided hypothesis test: p-value approach and critical value approach

4.4.4 Rejection using -values

We reject the null hypothesis if the  statistic is unusually large in absolute value. How unusual

the value is can be determined since, under the null hypothesis,  is the realization of a  ( − 1)
distributed random variable. If the value is so large as to be very unlikely to arise then our

hypothesis that  = ∗ is most likely wrong and we reject the null hypothesis.

Definition 16 The -value is the probability of observing a t statistic at least as large in absolute

value as that obtained in the current sample. For a two-sided test of 0 :  = ∗ against  :  6= ∗

the p-value is  = Pr[|−1| ≥ ||].
Definition 17 0 is rejected at significance level  if   , and is not rejected otherwise.

Continuing immediately with the earnings example, we found that  = 0724. Then

 = Pr[|170| ≥ 0724] = 0470
This is the value Pr(|T||t|)=0.4703 obtained in Chapter 4.1. There is high probability ( =
0470) of observing a  value of 0724 or larger in absolute value, even if the mean really is the
hypothesized value of $40,000. Since   005 we do not reject the null hypothesis that  = 40000
at significance level 005.

The left panel of Figure 4.3 displays the probability that |170| exceeds the observed  statistic

of 0724.
We are more likely to reject the null hypothesis the larger is the absolute value of the  statistic.

So, other things equal, we are more likely to reject the null hypothesis the smaller is (̄), since
computation of  entails division by (̄). So a larger sample is better, as then (̄) is smaller.

Remark 15 More precise estimation of , such as through a larger sample size, makes it more

likely that the null hypothesis is rejected.
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4.4.5 Rejection using Critical Regions

The -value method requires access to a computer, in order to precisely compute the -value for

any possible value of . Before widespread access to computers, an alternative method was used

that, for given significance level , leads to the same conclusion.

This alternative method defines a critical region or rejection region, which is the range

of values of  that would lead to rejection of 0 at the specified significance level . Then reject

0 if the computed value of  falls in this range.

Definition 18 For a two-sided test of 0 :  = ∗ against  :  6= ∗, and for specified signifi-
cance level , the critical value  is such that  = −12; equivalently Pr[|−1| ≥ ] = .

Definition 19 0 is rejected at significance level  if ||  , and is not rejected otherwise.

Return to the female earnings example. For significance level 005 and − 1 = 170, the critical
value

 = 170025 = 1974

0 is not rejected at significance level 005, since  = 0724 does not exceed 1974 in absolute value.
This conclusion is the same as that using the -value approach.

The shaded region in the right panel of Figure 4.3 shows the rejection region, the range of values

for which |170| exceeds 1974 since this occurs with probability 005. The sample  statistic equals
0724 which does not fall in the shaded region. So we do not reject 0.

It is important to note that the -value and critical region approaches lead to the same conclu-

sion, since ||  −12 is equivalent to   .

The critical value approach has the advantage that it does not require computing the -value

for any possible value of . Instead one can refer to a reasonable-sized printed table for the 

distribution at just a few selected probability values. Typically  tables are given for area in the

right tail equal to 0.25, 0.10, 0.05, 0.01, and 0.005, and for all degrees of freedom from 1 to 30,

every fifth integer from 30 to 60, then 70, 80, 90, 100 and ∞. To alternatively calculate -values
for a wide range of values of  would require many, many pages of tables.

The -value approach is preferred as given , the reader can easily test using his or her own

preferred value of . The alternative critical value method was developed for an earlier time when

reliance on published tables made it difficult to accurately calculate -values.

4.4.6 Which Significance Level?

Decreasing the significance level  makes it less likely that the null hypothesis is rejected. This

should be clear from, for example, the second panel of Figure 4.3, where the rejection region will

get smaller as the error  in the two tails gets smaller. What significance level should be used?

Remark 16 It is most common to use  = 005, called a test at the 5% significance level. Then a

type I error is made 1 in 20 times.
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This is a convention and in many applications other values of  may be warranted. For example,

in testing the null hypothesis that there will be no nuclear war the significance level may be chosen

to be much higher than 005, since the consequence of incorrectly failing to reject the null hypothesis
is so high. Reporting -values allows the reader to easily test using their own preferred value of .

4.4.7 Relationship to Confidence Interval

Two-sided tests can be implemented using confidence intervals. If the null hypothesis value ∗

falls inside the 100(1−) percent confidence interval then do not reject 0 at significance level .

Otherwise reject 0 at significance level .

For the female earnings data, from Table 4.2 the 95 percent confidence interval for population
mean female earnings is (37559 45266). Since this interval includes 40000 we do not reject 0 :
 = 40000 at significance level 005.

4.4.8 Summary

A summary of the preceding earnings hypothesis test example is the following.

Hypotheses 0 :  = 40000,  :  6= 40000
Significance level  = 005
Data ̄ = 41413,  = 25527,  = 171

Test statistic  = (41413− 40000)(25527√171) = 0724
(1) p-value approach  = Pr[|170| ≥ |0724|] = 0470
(2) Critical value approach  = 170025 = 1974
Conclusion Do not reject 0 at level 05 as (1)   05 or (2) ||  .

The -value and critical value approaches are alternative methods that for test at the same signifi-

cance level always lead to the same conclusion.

4.5 Two-sided Hypothesis Test Examples

We consider three examples of two-sided hypothesis tests. Additionally we discuss complications

that can arise — survey data should be from a representative sample and, for time series data, the

standard error of the mean, (̄), may no longer equal 
√
. The tests are computed manually

here; more simply one can use a command such as the Stata ttest command.

4.5.1 Example: Gasoline Prices

Test the claim that the mean price of regular gasoline in Yolo County is neither higher nor lower

than the norm for California.

The dataset GASPRICE comes from a website that provides daily data on gas prices. Data

are available for 32 Yolo County gas stations on a day when the average price for all California gas

stations was $3.81. Descriptive statistics are given in Table 4.5. The standard error of the sample

mean (̄) = 
√
 = 01510

√
32 = 0267.
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Table 4.5: Summary Statistics: Gasoline price per gallon at 32 gas stations.

Variable Obs Mean St. Dev. Min Max

Earnings 32 3.6697 0.1510 3.49 4.09

The null hypothesis is  = 381, tested against the alternative  6= 381. The  statistic is

 =
36697− 381

0267
= −5256

Large values of  in absolute value favor the alternative, as then ̄ is very different from 381. Using
the -value method we have

 = Pr[|31|  |− 5256|] = 0000
We reject 0 at level 05 since   05. Using the critical value method

 = 31025 = 2040

We reject 0 at level 05 since || = 5256   = 2040. Therefore the claim that population mean

Yolo County gas prices equal the California state-average price is rejected at significance level 0.05.

4.5.2 Example: Male Earnings

Test the claim that population mean earnings of male full-time workers in 2010 are $50,000.

The dataset EARNINGSMALE is a small subsample from the very large American Community

Survey (ACS). The subsample is selected in such a way that it is a simple random sample of the

population of 30 year-old male full-time workers in 2010. Descriptive statistics are given in Table

4.6. The minimum value of 1,000 is possible as the person was self-employed. The next lowest value

was 8,000. The standard error of the sample mean (̄) = 
√
 = 6503474

√
191 = 4705748.

Table 4.6: Summary Statistics: Annual earnings of male full-time workers aged 30 in 2010.

Variable Obs Mean St. Dev. Min Max

Earnings 191 52353.93 65034.74 1010 498000

The test is of 0 :  = 50000 against  :  6= 50000 The  statistic is

 =
5235393− 50000

4705748
= 5002

Large absolute values of  favor the alternative, as then ̄ is much greater than 50000. Here

 = Pr[|190|  500] = 0618
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We do not reject 0 at level 05 since  = 618 is not less than 05. Alternatively, the critical value

 = 190025 = 1973

We do not reject 0 at level 05 since || = 500 is not less than  = 1973. The data do not support
the claim that population mean earnings are more than $50,000 at significance level 05.

Note that it is important that the sample be a representative sample. National government-

sponsored surveys are usually not representative of the U.S. population, as they tend to oversample

low population segments of interest to policy-makers, such as racial minorities, people with low

income, and people in low population states. This is likely to lead to over-sampling of low-earnings

individuals.

For nonrepresentative samples with sampling weights we should base inference on the sample

mean ̄ and its standard error (̄) that are defined in Chapter 3.7. Then the 100(1 − )%
confidence interval for  is ̄± −12×(̄) and the  statistic becomes  = (̄−∗)(̄).

This issue was avoided in this illustrative example, however, by using the sampling weights to

select a subset of the original ACS dataset in a way that ensured that the sample considered here

is a representative sample of 30 year-old males. Similarly the female earnings data analyzed in

Chapters 2-4 were selected in such a way as to be a representative sample.

4.5.3 Example: Growth in U.S. real GDP per capita

Test the claim that the annual growth rate in U.S. real GDP per capita averaged 2.0% over the

period 1959 to 2020. Do the test at significance level  = 05.

We use dataset REALGDPPC introduced in Chapter 2.6. Here we use the year-to-year per-

centage changes in real per capita GDP, calculated as 100× (−−4)−4 where −4 denotes the
variable four periods earlier. Descriptive statistics are given in Table 4.7. Assuming observations

are independent, the standard error (̄) = 21781
√
241 = 01403.

Table 4.7: Summary Statistics: Annual growth rate in U.S. real GDP per capita using quarterly

data from 1959 to 2020.

Variable Obs Mean St. Dev. Min Max

Growth 241 1.9904 2.1781 -4.77 7.63

The null hypothesis is  = 20, tested against the alternative  6= 20. The  statistic is

 =
19904− 20

1403
= −0068

Large absolute values of  favor the alternative hypothesis, as then ̄ is very different from 2.0.

Using the -value method we have

 = Pr[|240|  |− 0068|] = 0946
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We do not reject 0 at level 05 since   05. Using the critical value method

 = 240025 = 1970

We do not reject 0 at level 05 since || = 0068   = 1970. Therefore we do not reject the claim
that population mean growth rate was 2.0% at significance level 005.

An important caveat in this example is that the underlying theory assumes that observations in

the sample are statistically independent or unrelated with each other. In fact for time series data

there can be dependence as, for example, high growth in one quarter is likely to recur again the

next quarter. Failure to control for this dependence can lead to an overestimate of the precision of

estimation, i.e. the reported standard error is too small.

Inference for time series regression, introduced in Chapter 12.1, provide statistical methods that

are valid even with such dependence. In this particular example there is very high dependence from

one quarter to the next, and appropriate methods lead to much larger standard error of ̄. From

Chapter 12.1, allowing for this complication yields (̄) = 0275 which is about twice as large.
Then  = (19904− 20)275 = −035. With this adjustment 0 is still not rejected at level 05.

4.6 One-Sided Directional Hypothesis Tests

A two-sided test is called two-sided as both   ∗ or   ∗ are included as alternatives to the
null hypothesis. For a one-sided hypothesis test the alternative considered is only that   ∗or
only that   ∗.

A two-sided hypothesis test is non-directional, as rejection may be due to concluding that either

  ∗ or   ∗. A one-sided test, by contrast, is directional. For example, we may test against
the alternative that   ∗.

For a one-sided directional hypothesis test care needs to be used in specifying the null and

alternative hypotheses as the conclusion can differ according to which hypothesis is set up as the

null and which is the alternative. As justified below, the following rule is used.

Remark 17 For one-sided tests the statement being tested is specified to be the alternative hypoth-

esis. And if a new theory is put forward to supplant an old, the new theory is specified to be the

alternative hypothesis.

For example, if we wish to test the claim that the population mean earnings exceed $40,000,

we should test 0 :  ≤ 40000 against  :   40000. By contrast, to test the claim that the

population mean earnings are less than $40,000, we should test 0 :  ≥ 40000 against  :  

40000.

Definition 20 An upper one-tailed alternative test is a test of 0 :  ≤ ∗, where ∗ is a
specified value for , against  :   ∗. A lower one-tailed alternative test is a test of

0 :  ≥ ∗ against  :   ∗.

Some textbooks instead define the null hypothesis of a one-sided test to be 0 :  = ∗. For
example, an upper one-tailed test is a test of 0 :  = ∗ against 0 :   ∗. This alternative
notation makes no difference to the subsequent analysis.
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4.6.1 P-values and Critical Regions

Inference for both types of one-sided test is based on the same calculated test statistic

 =
̄− ∗

(̄)


as used for two-sided hypothesis tests. As usual this statistic is viewed as being the realization of

a  ( − 1) distributed random variable. What differs in the one-sided case is calculation of the

-values and critical values.

For an upper one-tailed alternative test, large positive values of  are grounds for rejection of

0, since then ̄ (the estimate of ) is much larger than ∗. Thus the -value is the probability of
being in the upper tail of the  ( − 1) distribution, so  = Pr[−1 ≥ ]. And the critical region
for a test at significance level  is    where  is such that Pr[−1  ] =  and is denoted

 = −1. 0 is rejected at significance level  if    or, equivalently, if   .

For a lower one-tailed alternative test large negative values of  lead to rejection of 0, since

then ̄ is much smaller than ∗, and the test procedure is appropriately modified.

Definition 21 Let  be the usual  statistic. For an upper one-tailed alternative test the -value is

 = Pr[−1 ≥ ], the critical value at significance level  is  = −1, and we reject 0 if   

or, equivalently, if   . For a lower one-tailed alternative test the -value is  = Pr[−1 ≤ ],
the critical value at significance level  is  = −−1, and we reject 0 if    or, equivalently,

if   .

A one-sided test is a more focused test that, at given significance level, requires less evidence

to reject the null hypothesis, provided the test statistic  is in the correct tail of the distribution.

For example, consider an upper one-tail alternative test and suppose  = 18 and  = 31. We
reject 0 at significance level 005 since  = Pr[30  18] = 0041  005, whereas with a two-sided
test we would not reject as  = Pr[|30|  |18|] = 2× 0041 = 0082  005.

4.6.2 Example: Mean Annual Earnings

Suppose we wish to evaluate the claim that the population mean exceeds $40,000. A test of this

claim is implemented as a test of 0 :  ≤ 40000 against  :   40000, an example of an upper
one-tailed alternative test.

The  statistic has already been calculated as  = 0724. Large positive values of  support
rejection of 0 since then ̄ is much greater than the hypothesized population mean value of

$40,000.

The -value, the probability that a  distributed random variable exceeds the observed  value

of 0724, is

 = Pr[170 ≥ 724] = 0235

Since  is larger than 005, we do not reject 0 at significance level 005. The -value is the shaded
region in the left panel of Figure 4.4.
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One−sided test: critical value approach

Figure 4.4: One-sided directional hypothesis test (upper one-tailed alternative): p-value approach

and critical value apporach

Using the alternative equivalent critical value method instead, the critical value  solves Pr[170 ≥
] = 005 if testing is at the significance level 005. Then

 = 17005 = 1654

We do not reject 0 at significance level 005, since  = 0724 ≤ 1654. The critical region is the
shaded area in the in the right panel of Figure 4.4.

Using either method we do not reject at significance level 005 the null hypothesis that the
population mean earnings is less than or equal to $40,000. There is not enough evidence to support

the initial claim that mean earnings exceed $40,000.

4.6.3 Specifying the Null Hypothesis for One-Sided Tests

This more difficult section explains why the statement being tested is specified as the alternative

hypothesis.

Suppose the claim is made that population mean earnings are more than $40,000. Should we

perform an upper one-tailed alternative test or a lower one-tailed alternative test?

There are two potential ways to proceed, though only the first should be used as explained in

what follows.

1. Test 0 :  ≤ 40000 against  :   40000

2. Test 0 :  ≥ 40000 against  :   40000.

Suppose we take the first approach. The claim that   40000 is supported if 0 is rejected.

Rejection of 0 requires a sample mean of considerably more than 40000, say ̄  43000. Suppose
instead the second approach is taken. Then the claim is supported if 0 is not rejected. Rejection
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of 0 requires a sample mean of considerably less than 40000, say ̄  37000 (by symmetry).
Non-rejection of 0 then occurs if ̄  37000. Thus the claim that   40000 is supported if
̄  37000.

To summarize, the claim is that mean earnings exceed $40,000. The first specification of the

null and alternative hypotheses leads to support of the claim if the sample average exceeds $43,000,

while the second specification leads to support of the claim if the sample average exceeds $37,000.

The philosophy of hypothesis testing is to require strong evidence to support a claim. The first

specification is therefore used, with the claim made specified as the alternative hypothesis.

Remark 18 For one-sided tests the claim being tested is specified to be the alternative hypothesis,

as stronger evidence is then needed to support the claim than if the claim was set up as the null

hypothesis.

There can be considerable debate as to which hypothesis should be the null. For example,

suppose we wish to determine whether women at a workplace have been discriminated against, a

not unusual issue to be determined in court. One approach is to specify the alternative hypothesis

to be that women are paid less than men (the claim made) while another approach is to specify

this as the null hypothesis. Lawyers for the employer may favor the first approach, lawyers for the

employee may favor the second approach, and the statistical methodology presented here selects

the first approach.

4.7 Generalization of Confidence Intervals and Hypothesis Tests

Confidence intervals and hypothesis tests can be applied to parameters other than the population

mean . Leading examples include the difference in two means (2 − 1), and the slope of a
regression line, the subject of many later chapters. The approach for inference on  extends easily

to such settings.

4.7.1 Generalizations of Confidence Intervals

Inference on  is based on  = (̄ − )(̄). In words, the  statistic equals the estimate minus
the parameter divided by the standard error, where the standard error measures how precisely the

parameter has been estimated. More generally we have the following result.

Remark 19 For the estimators presented in this book, for sufficiently large sample size the statistic

 =
estimate− parameter
standard error

is a realization of a random variable that is approximately  () distributed, where the degrees of
freedom  for the  distribution varies with the application, and the standard error is the estimated

standard deviation of the estimate.

A 100(1− )% confidence interval for  is ̄± 2 × (̄). This generalizes as follows.
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Remark 20 A 100(1− )% confidence interval for the unknown parameter is

estimate± 2 × standard error.
The most commonly-used confidence level is 95 percent and 025 ' 2 for   30. This

immediately leads to the following simple rule-of-thumb.

Remark 21 An approximate 95% confidence interval for the unknown parameter is the two-standard

error interval

estimate± 2× standard error.
The term margin of error is used to describe the half-width of a confidence interval, or

2 × (·). The term is most often used in the context of 95% confidence intervals, since these

are the most commonly-used confidence intervals. Then since 025 ' 2,
Margin of error = 2× Standard error.

As an example of the above, suppose the sample estimate of a parameter  is 11 with standard
error of the estimate equal to 3, and the sample size is large. Then an approximate 95% confidence

interval for  is 11± 2× 3 or (5 17). Since the standard error is 3, the margin of error is said to be
2× 3 = 6, or ±6.

4.7.2 Generalizations of Hypothesis Tests

For hypothesis testing we again use the more general form of the  statistic, assumed to be approx-

imately  () distributed.

Remark 22 Consider a two-sided test at significance level  of the null hypothesis (0) that a
parameter equals a hypothesized value against the alternative hypothesis () that it does not.
Calculate the  statistic

 =
estimate− hypothesized parameter value

standard error


Under the null hypothesis  is the sample realization of a random variable that is approximately

 () distributed. The -value approach is to reject 0 if    where  = Pr[||  ||]. The
critical value approach is to reject 0 if ||   where  = 2 satisfies Pr[  2] = . For

given , the two methods lead to the same conclusion.

This generalizes inference for the mean, where the estimate is ̄, the parameter is , the standard

error is (̄) = 
√
, and  = − 1.

Continuing the earlier example with estimate of  equal to 11 and standard error of 3, for a test
of whether or not  = 20 the  statistic is  = (11− 20)3 = −3. We will reject 0 :  = 20 at level
0.05 since (for all but very small ) the  () critical value is approximately 2 and |− 3| = 3  2.

For both confidence intervals and hypothesis tests, the standard normal distribution is some-

times used rather than the  () distribution. The difference between  () and standard normal
disappears as  →∞.
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4.8 Proportions Data

As an example of adaptation or extension of methods for the sample mean, consider analysis of

proportions data that are data on the fraction of times that a given event occurs. Economic

examples are unemployment rates and employment rates, and a common example in the media are

political opinion polls on the fraction intending to vote for a given political candidate.

4.8.1 Analysis using General Results for the Sample Mean

Statistical inference on these data can be done using the methods of this chapter. The sample

proportion is viewed as the sample mean ̄ of data that take only the value 0 or 1, such as 1 if an

individual in the sample intends to vote Democrat and 0 otherwise.

The computational formula for the sample variance is 2 = 1
−1{

P
=1 

2
 − ̄2}; see Chapter

2.1 Since  takes only values 0 or 1,
P

=1 
2
 =

P
=1  = ̄, so

P
=1 

2
 − ̄2 = ̄(1− ̄) and

the sample variance equals 2 = ̄(1− ̄)(− 1). It follows that the standard error of the sample
mean (̄) = 

√
 =

p
̄(1− ̄)(− 1).

For proportions data the mean parameter  is denoted  (for proportion). Then applying

the results of this chapter for the sample mean, a 100 × (1 − )% confidence interval for  is

̄ ± 2;−1 ×
p
̄(1− ̄)(− 1). And a hypothesis test of whether or not  = ∗ can be based

on the statistic  = (̄ − ∗)
p
̄(1− ̄)(− 1) which is viewed as the realization of a  ( − 1)

distributed random variable.

4.8.2 Analysis using Results Specific to Proportions Data

Statistical packages often have procedures specific to proportions data that yield slightly different

results to the preceding analysis. So we detail these procedures.

For proportions data the underlying random variable  for each surveyed individual is viewed

as taking value 1 with probability  and value 0 with probability 1 − . This is the Bernoulli

distribution with population mean  =  and population variance 2 = (1−); see Appendix B.1.
For example, we may let  = 1 if the person intends to vote Democrat and  = 0 otherwise, so
then  is the unknown population probability of voting for a Democrat candidate. The Bernoulli

result that 2 = (1 − ) implies that Var[̄] = 2 = (1 − ) which can be estimated by
replacing  by an estimate.

For confidence intervals we estimate  by ̄ leading to (̄) =
p
̄(1− ̄), rather thanp

̄(1− ̄)(− 1) given earlier. Furthermore it is most common to use critical values from the

normal distribution. Then a 100 × (1 − )% confidence interval for  is most often ̄ ± 2 ×p
̄(1− ̄)
For large , often the case for proportions data such as political polling data, this confidence

interval will be quite similar to that obtained using the earlier general result for the sample mean.

First, the 2 and 2;−1 critical values are very close for large . Second, for large  the different
estimates of (̄) are very similar as division by  is then very similar to division by − 1.

For testing hypotheses on  it is most common to estimate Var[̄] = (1 − ) by replacing
 by the hypothesized value ∗ (rather than by ̄). Then (̄) =

p
∗(1− ∗) and a two-sided
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hypothesis test of 0 :  = ∗ against  :  6= ∗ is based on the statistic  = ̄−∗√
∗(1−∗) which

is (0 1) distributed under 0.

The standard normal approximation is felt to be good if both   10 and (1−)  10. Thus
for low  or high  considerably more than 30 observations are needed. For polling data and for most
economics applications with proportions data there are many observations, so the approximation

will be good. (If instead  is too small then hypothesis tests can use exact statistical inference on

 based on the binomial distribution; this is not presented here.)

4.8.3 Example: Voting Intentions

Suppose we have a random sample of 921 voters of whom 480 intend to vote Democrat and 441 who

intend to vote Republican. For statistical inference we use the special approach for proportions

data.

For these data ̄ = [480 × 1 + 441 × 0]921 = 05212 and (̄) =
p
̄(1− ̄) = 001646.

For the standard normal, 025 = 1960. So a 95% confidence interval for the population mean

proportion of Democrat voters is 05212± 1960× 001646 = (04889 05535). Equivalently, a 95%
confidence interval for the population percentage of voters who intend to vote Democrat is (48.9%,

55.3%).

Now suppose we wish to test the belief that the Democrat candidate will win the election.

This is a one-sided test with the belief specified to be the alternative hypothesis. Thus we test

0 :  ≤ 05 against  :   05. For hypothesis testing we use (̄) =
p
∗(1− ∗), where

∗ = 05, so the test statistic  = 05212−05√
05×(1−05)921 = 1287. Then  = Pr[||  1287] = 0198

exceeds 005 so we do not reject the null hypothesis at significance level 005. Alternatively, the
critical value  = 025 = 1964, and we do not reject 0 at level 05 since || = 1287  . We

cannot conclude that the Democrat candidate will win the election at significance level 0.05.

4.8.4 Margin of Error of an Opinion Poll

The margin of error often reported alongside an opinion poll is two times the standard error, the

approximate half-width of a 95% confidence interval. For proportions data ̄(1 − ̄) ≤ 025 since
̄(1 − ̄) takes a maximum value of 025 when ̄ = 05. It follows that (̄) =

p
̄(1− ̄) ≤p

025 = 05
√
, so the margin of error is at most 1

√
.

Published opinion polls typically interview between 600 and 2,000 people. Then the correspond-

ing maximum margin of error is, respectively, 41% and 22% since, for example, 100
√
600 ' 41.

For many purposes these margins of error are tolerable, but they will be too large for predicting

the result of a close election.
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4.9 Key Concepts

1. The key tools of statistical inference are confidence intervals and hypothesis tests.

2. For statistical inference on  we use the  statistic  = (̄ − )(̄). This is the distance
between ̄ and , normalized by the standard error of the mean.

3. Under simple random sampling the  statistic  is the realization of a randomly variable

that is  ( − 1) distributed, exactly if data are normally distributed and approximately for
nonnormal data if  is sufficiently large.

4. In most cases for   30 it is reasonable to use the  (− 1) distribution.
5. The  () distribution, the  distribution with  degrees of freedom, is like a squashed version
of the standard normal distribution with fatter tails. As  → ∞ the t distribution goes to

the standard normal.

6.  denotes a random variable that is  () distributed.

7. The critical value  is that value such that a  () distributed random variable exceeds 
with probability , i.e., Pr[  ] = 

8. The critical value 2 is that value such that a  () distributed random variable exceeds

in absolute value 2 with probability , i.e., Pr[||  2] = 

9. A 100(1− )% confidence interval for  is ̄± −12 × (̄). This interval will include 
with probability .

10. A calculated 95 percent confidence interval for the population mean is an interval that if

constructed for each of an infinite number of samples will include the true population mean

 95% of the time (and will not include  5% of the time).

11. It is most common to use a 95% confidence interval, so  = 005 and 2 = 0025. A higher
degree of confidence leads to a wider confidence interval.

12. An approximate 95% confidence interval for  is the two standard error interval ̄±2× (̄)
where (̄) = 

√
.

13. A two-sided hypothesis test is a test of 0 :  = ∗ against  :  6= ∗.

14. A type I error occurs if 0 is rejected when 0 is true.

15. The significance level or size of a test, denoted , is the pre-specified maximum probability

of a type I error that will be tolerated.

16. The  test statistic  = (̄−∗)(̄) is the realization of a random variable that is approxi-

mately  (− 1) distributed under 0 :  = ∗.
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17. The -value is the probability of observing a  statistic at least as large in absolute value as

that obtained in the current sample.

18. For a two-sided test  = Pr[|−1| ≥ ||]. 0 is rejected at significance level  if   and is

not rejected otherwise.

19. For a two-sided test the critical value  = −12. 0 is rejected at significance level  if

||  , and is not rejected otherwise.

20. It is most common to test at significance level  = 005.

21. For one-sided tests the statement being tested is specified to be the alternative hypothesis.

22. An upper one-tailed alternative test is a test of 0 :  ≤ ∗ against  :   ∗. We reject
0 if  = Pr[−1 ≥ ]   or, equivalently, if    = −1.

23. A lower one-tailed alternative test is a test of 0 :  ≥ ∗ against  :   ∗. We reject 0

if  = Pr[−1 ≤ ]   or, equivalently, if    = −−1.
24. For one-sided tests at significance level 005 a rough guide is to use as critical value 1645 for

an upper one-tail alternative and −1645 for a lower one-tail alternative, as −1025 = 1645
for large .

25. In many settings the statistic  = (estimate−parameter)(standard error) can be viewed as
the realization of a  () distributed random variable where the degrees of freedom  varies

with the application.

26. An approximate 95% confidence interval for a parameter is then the estimate plus or minus

two times the standard error.

27. The half-width of a confidence interval is called the margin of error.

28. The margin of error for a 95% confidence interval is approximately two times the standard

error.

29. Proportions data can be analyzed using the methods of this chapter, but are usually analyzed

using a minor adaptation of these methods.

30. Key terms:  statistic;  distribution; degrees of freedom; confidence interval; two standard

error interval; margin of error; hypothesis test; null hypothesis; alternative hypothesis; two-

sided test; type I error; significance level; -value; critical region; rejection region; critical

value; one-sided test; upper one-sided alternative; lower one-sided alternative; margin of

error.
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4.10 Exercises

1. For a random variable  that is  (22) distributed use a statistical package or a table of the
 (22) distribution to find

(a) Pr[  20]. (b) Pr[  −20 or   20]. (c) ∗ such that Pr[  ∗] = 05.

(d) ∗ such that Pr[  −∗ or   ∗] = 05.

2. Repeat the previous exercise for the  (33) distribution.

3. For a standard normal distributed random variable , give the following (approximately)

without using a computer or referring to a table. Hint: A normally distributed random

variable lies within two standard deviations of its mean with approximate probability of 095.

(a) Pr[  20] (b) Pr[  −20 or   20]. (c) ∗ such that Pr[  ∗] = 0025.

(d) ∗ such that Pr[  −∗ or   ∗] = 005.

4. For a standard normal distributed random variable , give the following without using a

computer or referring to a table. Hint: A normally distributed random variable lies within

1.645 standard deviations of its mean with approximate probability of 090.

(a) Pr[  1645] (b) Pr[  −1645 or   1645]. (c) ∗ such that Pr[  ∗] = 005.

(d) ∗ such that Pr[  −∗ or   ∗] = 010.

5. The dataset TDIST4 has the sample means ̄ and corresponding standard standard deviations

 from 1000 simple random samples of size 4 where  ∼ (100 162).

(a) Compute  = (̄− 100)8 for each of the 1,000 samples.
(b) What mean, standard deviation and distribution do you expect for ? Explain.

(c) Obtain detailed summary statistics for  Compare these to your answers in (b).

(d) Compute  = (̄− 100)(̄) where (̄) = 
√
 . Explain why  is 3 distributed.

(e) The 3 distribution has mean 0 and variance 3 and for example, Pr[3  1638] = 010.
Obtain detailed summary statistics for  and compare to these expected values.

(f) On the same graph plot kernel density estimates for both  and  and comment on any

differences.
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6. The dataset TDIST25 has the sample means ̄ and corresponding standard standard devia-

tions  from 1000 simple random samples of size 25 where  ∼ (200 502).

(a) Compute  = (̄− 200)10 for each of the 1,000 samples.
(b) What mean, standard deviation and distribution do you expect for ? Explain.

(c) Obtain detailed summary statistics for ? Compare these to your answers in (b).

(d) Compute  = (̄− 200)(̄) where (̄) = 
√
 . Explain why  is 24 distributed.

(e) The 24 distribution has mean 0 and variance 1091 and for example, Pr[24  1318] =
010. Obtain detailed summary statistics for  and compare to these expected values.

(f) On the same graph plot kernel density estimates for  and for  and comment on any

differences.

7. For a random variable  that is  (30) distributed, Pr[−13    13] = 080. Using this
result, obtain an 80% confidence interval for the population mean  given a random sample

with  = 31, ̄ = 40 and 
√
 = 10.

8. Consider a random variable  that is  (60) distributed.

(a) Find Pr[| |  12]. Show your answer on a hand-drawn graph similar to Figure 4.2.
(b) Find 60025. Show your answer on a hand-drawn graph similar to Figure 4.2.

9. Suppose we obtain a random sample with ̄ = 10,  = 20 and  = 25. Obtain a 95%
confidence interval for  using  critical values.

10. Repeat the previous exercise with ̄ = 80,  = 60 and  = 100.

11. The dataset HOUSE has data on the price and size of houses sold in a small homogeneous

community.

(a) Read the data into your statistical package.

(b) Using a statistical package command obtain a 95% confidence interval for mean price.

(c) Now manually calculate the same confidence interval using the sample mean, standard

deviation, sample size and an appropriate  critical value.

12. Repeat the previous exercise for house size.

13. Suppose a sample yields a 95% confidence interval for  of (20, 30). Do you expect a wider,

narrower, or similar confidence interval in the following situations?

(a) A 99% confidence interval is constructed; (b) the sample size is much larger;

(c) the sample mean is much larger; (d) the standard deviation is much larger.
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14. Suppose a sample yields a 95% confidence interval for  of (20, 30). Which of the following

is likely to lead to a narrower confidence interval?

(a) A 90% confidence interval; (b) a smaller sample;

(c) a sample that had the same mean but a larger standard deviation.

15. The dataset HOUSE has data on the price and size of houses sold in a small homogeneous

community.

(a) Read the data into your statistical package.

(b) Using a statistical package command perform a two-sided test of whether or not for house

price  = 270000 at significance level 0.05. State the null and alternative hypotheses
and your conclusion.

(c) Now manually perform the same test using the sample mean, standard deviation, sample

size and an appropriate  critical value.

(d) Repeat part (c) except compute the -value. State your conclusion.

16. Repeat the previous exercise for house size and test of whether or not  = 2000.

17. Suppose a random sample of 25 economists forecast economic growth for the next year. The

range of forecasts is from growth of -2.0 percent to growth of 3.5 percent with average 1.2

percent and with standard deviation of 2.0 percent.

(a) Obtain the standard error of the sample mean forecast.

(b) Give a 95 percent confidence interval for the population mean forecast.

(c) Test at significance level 0.05 the claim that growth will be zero next year. State the

null and alternative hypotheses and your conclusion.

(d) Test at significance level 0.05 the claim that the next year will be a growth year, i.e. that

growth will be positive. State the null and alternative hypotheses and your conclusion.

(e) What distributional assumptions on the underlying forecasts are needed to justify the

methods used in parts b to d?

(f) You are told that the economists sampled are top advisors to the main opposition polit-

ical party in the country. How, if at all, would the analysis in this exercise be affected?
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18. The IQ score for a simple random sample of 88 people has sample mean 102 and sample
standard deviation 14.

(a) Give a 95% confidence interval for the population mean IQ. [Hint: Be sure to use the

standard error of the sample mean and not the standard deviation].

(b) Perform a test at significance level 0.05 of the null hypothesis that population mean IQ

equals 100 against the alternative that it does not equal 100. Use the -value approach.

(c) Repeat part (b) using the critical value approach.

(d) The claim is made that population mean IQ exceeds 100. Perform an appropriate hy-

pothesis test at significance level 0.05 State clearly your conclusion.

19. Suppose we fail to reject 0 at significance level 005. Do you expect it to be more likely that
we reject 0 in the following situations?

(a) The test is at significance level 001.

(b) The sample size is much larger.

20. For a random sample with  ∼ ( 2) answer true or false to the following statements.

(a) If we reject a hypothesis on  at level 0.05 then we will necessarily also reject at level

0.01.

(b) If a 95% confidence interval for  includes zero then we will necessarily reject 0 :  = 0
against  :  6= 0 at level 0.05.

(c) If ̄ = 2 leads to  = 006 in test of 0 :  = 0 against  :  6= 0 then we will reject
0 :  ≤ 0 against  :   0 at level 0.05.

21. The dataset TDIST4 has the sample means ̄ and corresponding standard standard deviations

 from 1000 random samples of size 4 where  ∼ (100 162).

(a) For each of the 1,000 samples compute a 95% confidence interval for .

(b) How many of these confidence intervals include 100. Is this what you expect? Explain.

(c) For each of the 1,000 samples compute the -statistic for test of 0 :  = 100 against
 :  6= 100.

(d) Count how many of these tests reject 0 at level 0.05. Is this what you expect? Explain.
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22. The dataset TDIST25 has the sample means ̄ and corresponding standard standard devia-

tions  from 1000 random samples of size 25 where  ∼ (200 502).

(a) For each of the 1,000 samples compute separately the lower bound and upper bound of

a 95% confidence interval for .

(b) How many of these confidence intervals include 200. Is this what you expect? Explain.

(c) For each of the 1,000 samples compute the -statistic for test of 0 :  = 200 against
 :  6= 200.

(d) Count how many of these tests reject 0 at level 0.05. Is this what you expect? Explain.

23. Repeat exercise 21 except generate the 1,000 sample means and standard deviations yourself.

For example, use the Stata code in Chapter 3.7 except replace set obs 30 with set obs

4 and replace commands generate u=runiform() and generate x=u0.5 with generate

x=rnormal(100,16).

24. Repeat exercise 22 except generate the 1,000 sample means and standard deviations yourself.

For example, use the Stata code in Chapter 3.7 except replace set obs 30 with set obs

25 and replace commands generate u=runiform() and generate x=u0.5 with generate

x=rnormal(200,50).

25. The summary statistics for usual hours worked per week (variable hours) for a simple random

sample of women aged 30 years are the following

Variable Obs Mean Std. Dev. Min Max

 109 3281 1973 0 90

(a) Obtain the standard error of the sample mean.

(b) Give a 95% confidence interval for population mean usual hours worked.

(c) The claim is made that the population mean usual hours worked is 35 hours. Test

this claim at significance level 0.01. State the null and alternative hypotheses and your

conclusion.

(d) The claim is made that the population mean usual hours worked is less than 35 hours.

Test this claim at significance level 0.10. State the null and alternative hypotheses and

your conclusion.
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26. The summary statistics for educational level for a simple random sample of women aged 30

years who are full-time workers are the following

Variable Obs Mean Std. Dev. Min Max

 171 1443 274 3 20

(a) Obtain the standard error of the sample mean.

(b) Give a 95% confidence interval for population mean usual hours worked.

(c) The claim is made that the population mean education is 14 years. Test this claim at

significance level 0.05. State the null and alternative hypotheses and your conclusion.

(d) The claim is made that the population mean education is more than 14 year. Test

this claim at significance level 0.05. State the null and alternative hypotheses and your

conclusion.

27. A statistical package gives the following output. Use this output to answer the following

questions in the easiest way.

 Pr(T < t) = 0.9566         Pr(|T| > |t|) = 0.0868          Pr(T > t) = 0.0434
    Ha: mean < 45               Ha: mean != 45                 Ha: mean > 45

Ho: mean = 45                                    degrees of freedom =       84
    mean = mean(x)                                                t =   1.7330
                                                                              
       x        85    62.46812    10.07956    92.92892    42.42382    82.51242
                                                                              
Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
                                                                              
One-sample t test

(a) Perform a test of whether or not  = 0 at significance level 005.

(b) The claim is made that the population mean is positive. State the null and alternative

hypotheses and perform a test at significance level 005

(c) Calculate a 90% confidence interval for .

(d) The claim is made that the population mean exceeds 35. State the null and alternative
hypotheses and perform an appropriate test at significance level 005.

28. The dataset NAEP has scores for 51 U.S. states (including the District of Columbia) on the

National Assessment of Educational Progress (NAEP) for eighth-grade mathematics for the

years 2003, 2005, 2007 and 2009. Consider the change in the score for each state from 2003

to 2005 (which you need to calculate).

(a) Generate data for the change in the score from 2003 to 2005.

(b) Calculate a 95% confidence interval for the mean score change.

(c) Test at significance level 0.95 the claim that there has been no change in the mean score.

State the null and alternative hypotheses and your conclusion.
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(d) Test at significance level 0.05 the claim that the mean score improved. State the null

and alternative hypotheses and your conclusion.

29. Hospitals in the U.S. post very high charges, much higher than their costs. (Hospitals then

discount off their posted prices with discount varying according to the power of the purchaser,

such as an individual’s health insurance company.) The dataset KNEEREPLACE has 2011

data for a number of New York hospitals on the average posted charge (meancharge) and

average cost (meancost)of knee joint replacement for cases of moderate severity, where the

average is over all such cases the hospital treated in 2011.

(a) Calculate the ratio of average posted charge to mean cost for each hospital.

(b) Calculate a 95% confidence interval for the mean of this ratio. Comment.

(c) Test at significance level 0.05 the claim that the mean ratio is equal to 2.5. State the

null and alternative hypotheses and your conclusion.

(d) Test at significance level 0.05 the claim that the mean ratio is less than 2.5. State the

null and alternative hypotheses and your conclusion.

30. The dataset SPOTFORWARD has data for the spot price (niso) and one-day ahead forward

price (npx) in the California wholesale electricity market for the one hour period 5-6 p.m. for

each day from April 1 1998 to February 12 2000. Restrict analysis to days in 1998.

(a) Generate daily data (for 1998) on the difference between the spot price and the one-day

ahead price.

(b) Create a variable dayofyear and give a line plot of the difference against dayofyear.

Comment.

(c) Calculate a 95% confidence interval for the mean difference.

(d) Test at significance level 0.95 the claim that there is no difference between the spot and

one-day ahead price. State the null and alternative hypotheses and your conclusion.

(e) Test at significance level 0.05 the claim that the one-day ahead price exceeds the spot

price. State the null and alternative hypotheses and your conclusion.

(f) If markets work fully efficiently then the day-ahead price should equal the spot price.

Does this appear to be the case here?

31. Suppose the sample estimate of a parameter  is 25 with standard error 4 and the sample
size is large.

(a) Obtain an approximate 95% confidence interval for .

(b) Give the margin of error of the estimate.

(c) Perform a test whether or not  = 15 at significance level 005

32. Repeat the previous exercise if the estimate is 10 with standard error 3.
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33. Suppose a random sample of 1,025 potential voters of whom 550 plan to vote for candidate

A and the remainder vote for candidate B. Use the methods of the section 4.8.3 example in

answering the following.

(a) Provide an estimate of the proportion voting for candidate A and the standard error of

this estimate.

(b) Provide a 95% confidence interval for the proportion voting for candidate A.

(c) Give the margin of error for this opinion poll.

(d) Perform a test at level 0.05 of whether candidate A will win the election.

34. A government survey of 5,283 people finds that the unemployment rate is 6.7%. Use the

methods of the section 4.8.3 example in answering the following.

(a) Compute the margin of error for the estimate of the unemployment rate.

(b) Provide a 95% confidence interval for the unemployment rate.

(c) Test at significance level 0.05 whether the population mean unemployment rate is 7.0%.



Appendix B

Some Essentials of Probability Theory

Statistical inference extrapolates from sample estimates, notably the sample mean and regression

coefficients, to their population analogs — the mean and the conditional mean. This extrapolation

controls for the randomness of the sample using results from probability theory.

Appendix B.1 presents basic probability theory, Appendix B.2 presents results on the distribu-

tion of the sample mean, and Appendix B.3 presents material on conditional distributions that is

the probability basis for the linear regression model.

B.1 Probability Theory for a Single Random Variable

A random variable is a variable whose value is determined by the outcome of an experiment,

where an experiment is an operation whose outcome cannot be predicted with certainty. Standard

notation is to denote the random variable in upper case, say  (or  or ), and to denote the

values that the random variable can take in lower case, say  (or  or ).

The probability distribution of a random variable  describes the random behavior of .

B.1.1 Discrete Random Variables

A discrete random variable is a random variable that can only take a finite number of values

(or a countably infinite number of variables such as 0, 1, 2, 3, ....). As an example,  may measure

whether or not a person is currently employed, so  may take values 1 (employed) or 0 (not
employed). As a second example,  may be the number of consultations with a doctor over the

past year; then  may take the values 0, 1, 2, ..... .
In general a discrete random variable takes values 1, 2, ... The probability mass function

cumulative probability distribution function gives the probabilities for each value taken by the

random variable:

Pr[ = ]  = 1 2 

Probabilities lie between 0 and 1 and sum to one over all possible values of , soX

Pr[ = ] = 1

453
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where
P

 denotes summation over all possible values taken by .

The cumulative distribution function gives the probability that the random variable  is

less than or equal to a particular value:

Pr[ ≤ ]  = 1 2 

The probability that  lies in a given range can be calculated using either the probability mass

function or the cumulative distribution function. We have

Pr[ ≤  ≤ ] = Pr[ = ] + · · ·+Pr[ = ]
= Pr[ ≤ ]− Pr[  ]

The expected value of a function () of the random variable  is the long-run average value

that we expect if we draw a value 1 of  at random and compute (1), draw a second value and
so on, and then obtain the average of these values. Equivalently, for each value that  might take,

compute () and then calculate the probability-weighted average of these values by weighting this
value by the probability of that value  occurring. Then the expected value of ()

E[()] = (1)× Pr[ = 1] + (2)× Pr[ = 2] + · · ·
=

X

()× Pr[ = ]

The two most commonly-used expected values are themean  ≡ E[] that sets () =  and

the variance 2 ≡ E[(−)2] that sets () = (−)2. Additionally the standard deviation
 is the square root of the variance. The expected value of a constant is the constant: E[] = 

The discrete probability distributions analyzed in introductory probability courses are the

Bernoulli, binomial and Poisson distributions. Basic analysis of economics data uses only the

first of these, which is presented next.

B.1.2 Bernoulli Distribution

The Bernoulli distribution is the term used to describe the distribution of a random variable

that takes just one of two values: 0 or 1. This is the simplest example of a discrete random variable.
Denote the probability that  = 1 by . For example,  = 05 in the case of a coin toss if the

the coin is fair. Then it must be the case that  = 0 with probability 1− , since the probabilities

over all possible outcomes must sum to one, and + (1− ) = 1. So

Pr[ = ] =

½
  = 1
1−   = 0

The quantity  that determines the probability distribution is called a parameter. It is unknown,

but can be estimated given a sample.

A Bernoulli random variable has mean  =  and variance 2 = (1− ).
These properties can be obtained using the following algebra. For the mean, E[] = 0×Pr[ =

0]+1×Pr[ = 1] = 0× (1−)+1× = . And the variance 2 = E[(−)2] = (0−)2×Pr[ =
0] + (1− )2 × Pr[ = 1] = 2 × (1− ) + (1− )2 ×  = (1− ){+ (1− )} = (1− ).
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B.1.3 Linear Transformation of a Random Variable

If we add a fixed amount  to a random variable then the mean is changed by the amount 

and the variance is unchanged. If we multiply a random variable by a fixed multiple then

the mean is multiplied by  and the variance is multiplied by 2 (hence the standard deviation is

multiplied by ). Combining, if has mean  and variance 2 then the random variable  = +,
a linear transformation of , has mean E[ ] = + E[] and variance Var[ ] = 2Var[]

It follows that if  has mean  and variance 2 then  −  has mean E[] −  = −  = 0
and variance 2. Subsequent division by  leads to mean 0 = 0 and variance 22 = 1. Thus
the random variable  = ( − ) is a standardized random variable with mean zero and

variance 1. So if we subtract the mean and divide by the standard deviation we transform the

random variable  to the new random variable  that necessarily has mean 0 and variance 1.

B.1.4 Continuous Random Variables

Not all random variables take just discrete values.

A continuous random variable  can take an uncountably infinite number of values, such

as any real value, or any positive real value, or any real value between zero and one. As an example,

 may be annual income of an individual. Or  may be the length of time that the individual has

been employed at their current job.

Since  can take any value, the probability that it equals any particular value is infinitesimally

small. So it is meaningless to consider the probability of  taking a particular value. Instead we

evaluate the probability that  lies in a range of values.

A continuous probability distribution is defined by the probability density function

(). This function has the property that the probability that  lies between two values, say 

and , is given by the area under the function () between  and . Since Pr[ = ] = 0 for a
continuous random variable, the following expressions yield equivalent probabilities

Pr[    ] = Pr[ ≤  ≤ ] = Pr[ ≤   ] = Pr[   ≤ ]

The total area under the probability density function curve, from the minimum to maximum

value of , equals one since probabilities sum to one.

The associated cumulative probability distribution function, denoted  (), is defined as
Pr[ ≤ ] and is given by the area under the curve from the lowest value that  can take to .

B.1.5 Standard Normal Distribution

The leading example of a continuous random variable is a standard normal random variable. The

standard normal distribution is defined by its probability density function

() =
1√
2
exp

µ−2
2

¶
 −∞   ∞

The standard normal can be shown to have mean  = 0 and standard deviation  = 1. The
notation (0 1) is used to denote the standard normal distribution. The standard normal density
is the curve given in Figure B.1.
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Figure B.1: Standard normal density: Graphs of Pr[ ≤ 15] and Pr[05 ≤  ≤ 15].

The shaded region in the left panel of Figure B.1 gives Pr[ ≤ 15], since this is the area under
the curve from −∞ to 15. The total area under the curve is necessarily 1, and it appears visually
that Pr[ ≤ 15] ' 09 since the shaded region is about 90% of the total area under the curve.

From standard normal tables or a computer in fact Pr[ ≤ 15] = 09332.
The right panel of Figure B.1 gives Pr[05   ≤ 15]. This appears to be approximately equal

to 02. From standard normal tables or a computer in fact Pr[05   ≤ 15] = 02317.
For those familiar with integral calculus the area under the curve is obtained by taking the

integral. Thus, for example, Pr[ ≤ 15] = R 15
−∞ (). For the standard normal, where () =

(1
√
2) exp(−22), this integral has no exact solution. Instead one uses numerical approximations

that are given in statistical tables or are calculated by the computer.

B.1.6 Other Continuous Distributions

The normal distribution is a generalization of the standard normal distribution that allows for a

nonzero mean and a standard deviation other than one. In the more general case the normal

distribution, with mean  and standard deviation , has probability density function () =
(1
√
22) exp

¡−(− )222
¢
and is denoted ( 2).

A powerful property of the normal, shared by few other distributions, is that linear combinations

of normally distributed random variables are also normally distributed. If  ∼ ( 2) then
 =  +  ∼ ( +  22). One consequence of this result is that if  ∼ ( 2) then
 = ( − ) ∼ (0 1). In words, for a normally distributed random variable, subtracting the

mean and then dividing by the standard deviation leads to a random variable that is standard

normal distributed.

Aside from the normal, the continuous probability distributions most often used in econometrics

are the ,  and chi-squared distributions, as these are used to obtain critical values and -values

for hypothesis tests. The probability density functions for these distributions are complicated and

are not presented here, and probabilities need to be obtained from tables or be calculated by the
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computer. The  distribution is discussed in some detail in Chapter 4.2. The  distribution

and the chi-squared distribution are introduced in Chapter 11.5. Appendix F gives tables.

B.2 Probability Theory for the Sample Mean

We provide in more detail results presented in Chapter 3 for the average ̄ that is the sum of 

independent random variables 1  divided by .

B.2.1 Statistical Independence

The two random variables and  are statistically independent or, more simply, independent

if the value taken by  is unrelated to the value taken by  .

For example, let the two random variables and  represent the outcomes from two consecutive

tosses of the coin. Then the two random variables are statistically independent if the result of the

first toss, say a head, has no bearing on the result of the second toss. If the probability of heads on

the first toss is  then, regardless of whether the first toss results in heads or tails, the probability

of heads on the second toss is still . (This is the case even if  = 04, say, so that the coin is not
fair).

Random variables are not necessarily statistically independent. But under simple random sam-

pling 1  are statistically independent.

B.2.2 Sums of Random Variables

The mean of a weighted sum of random variables equals the weighted sum of their means.

That is,

E[ +  ] = × E[] + × E[ ]
The variance of a sum of random variables is more complicated, as it depends on the statistical

relationship between  and  . Simplification occurs if the random variables are statistically

independent. Then

Var[ +  ] = Var[] + Var[ ] = 2 ×Var[] + 2 ×Var[ ]
This is a weighted sum of the individual variance, with weights that are the square of the original

weights.

Applying this result, for statistically independent random variables the sum + has variance

that is the sum of the variance of  and the variance of  . Similarly, the difference  −  has

variance that is the sum of the variance of  and the variance of  .

B.2.3 Mean and Variance of the Sample Mean

The sample mean is the random variable ̄ that equals the sum of 1 to  divided by . This

can be written as a weighted sum of random variables

̄ =
1


1 +

1


2 + · · ·+ 1



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We first show that E[̄] =  given common mean E[] =  (assumption A in Chapter 3.4).

Then E[] =  and hence

E[̄] =
1


+

1


+ · · ·+ 1


 = 

Next we want to show that Var[̄] = 2 given assumptions A—C in Chapter 3.4. The  are

statistically independent by assumption C, so the variance of a sum is the sum of the variances and

Var[̄] = Var
£
1

1 +

1

2 + + 1




¤
= Var

£
1

1

¤
+Var

£
1

2
¤
+ · · ·+Var £ 1




¤
=
¡
1


¢2
Var [1] + · · ·+

¡
1


¢2
Var [] 

where the third equality uses Var[] = 2Var[]. Given assumption B of a common variance 2,

Var[̄] =
¡
1


¢2
2 + · · ·+ ¡ 1



¢2
2, which equals  times

¡
1


¢2
2, which equals 1


2.

It follows that the standard deviation of ̄ is
p
2 = 

√


B.2.4 Law of Large Numbers

Now consider the behavior of ̄ as the sample size gets large. Then ̄ has mean  and variance

that goes to zero, since the variance 2→ 0 as →∞.
So the distribution of ̄ is centered on  with very little variation around . The formal

statistical term used is that ̄ converges in probability to  if the probability that |̄ − |  

goes to zero as →∞, no matter how small   0 is chosen to be.
A law of large numbers states that, under some assumptions on the individual , an av-

erage of random variables converges in probability to its expected value; here that ̄ converges in

probability . The simplest law of large numbers assumes that  are statistically independent and

identically distributed and that the mean  exists. This is the case for simple random sampling.

B.2.5 Central Limit Theorem

The standardized variable  = (̄ − )(
√
) has mean zero and variance one.

A central limit theorem states that, under some assumptions on the individual ,  is

standard normally distributed as the sample size gets large. That is, as →∞

 =
(̄ − )


√

∼ (0 1)

Note that this result does not require that  is normally distributed. It follows that in large

samples ̄ ∼ ( 2).
There are many central limit theorems that vary with the assumptions made about the indi-

vidual random variables . The simplest central limit theorem is the Lindberg-Levy central limit

theorem that assumes that  are statistically independent and identically distributed with mean

 and variance 2. This is the case for simple random sampling.

More general central limit theorems do not require a common mean, a common variance and/or

statistical independence. Then  = (̄− E[̄])
p
Var[̄] ∼ (0 1) where E[̄] may no longer

simplify to  and Var[̄] may no longer simplify to 
√
.
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B.3 Probability Theory for Two Related Random Variables

The bivariate regression model is a model of the conditional mean of  given  = . Here we

define the conditional mean, conditional variance, covariance and correlation.

B.3.1 Joint Probabilities

Consider the statistical relationship between two random variables  and  that are both discrete

random variables. Their joint probability of occurrence is defined by the joint probability mass

function

Pr[ =   = ]  = 1 2   = 1 2 

where upper case denotes the random variable and lower case denotes the values that the random

variable might take.

Given knowledge of the joint probabilities of  and  we can obtain the separate probabilities

for  and for  . For example, Pr[ = ] equals the sum over all possible values of  of the joint

probability Pr[ =   = ].

B.3.2 Example

Throughout this appendix we consider the following example:

Pr[ =   = ] =

⎧⎪⎪⎨⎪⎪⎩
01 for  = 1,  = 50
01 for  = 1,  = 30
02 for  = 0,  = 30
06 for  = 0,  = 10

Note that these probabilities sum to one.

For this example, Pr[ = 1] = Pr[ = 1  = 50]+ Pr[ = 1  = 30] = 01 + 01 = 02 and
Pr[ = 0] = Pr[ = 0  = 30] + Pr[ = 0  = 10] = 02 + 06 = 08. So  = 1 with probability
02 and  = 0 with probability 08. Thus

Pr[ = ] =

½
02 for  = 1
08 for  = 0

By similar summation, now over the possible values of , Pr[ = 50] = 01, Pr[ = 30] =
01 + 02 = 03, and Pr[ = 10] = 06. So

Pr[ = ] =

⎧⎨⎩
01 for  = 50
03 for  = 30
06 for  = 10
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B.3.3 Conditional Distribution

A very important result is Bayes Theorem that states that for any two events  and , the

probability that event  happens, given that event  happens, is the joint probability that  and

 happen divided by the probability that  happens:

Pr[|] = Pr[ ∩]
Pr[]



where  ∩ means the intersection of events  and .

For example, consider the probability of getting a three on the second toss of a six-sided die

(event ), given that the combined sum of the first two tosses is five (event ). The only way that
both  and  can occur is if the first toss was a 2 and the second was a 3. The two tosses can
sum to five in four ways, with tosses (1 4), (2 3), (3 2), and (4 1). All these outcomes are equally
likely, so the conditional probability of event  given  is one in four, or 025.

More generally, the conditional probability of  given 

Pr[ = | = ] =
Pr[ =  = ]

Pr[ = ]


Consider the earlier numerical example and condition on  = 1. Then  = 50 or  = 30 with
Pr[ = 1  = 50] = 01 and Pr[ = 1  = 30] = 01. Also Pr[ = 1] = 02. It follows that the
conditional distribution of  given  = 1 is Pr[ = 30| = 1] = 0102 = 05 and Pr[ = 50| =
1] = 0102 = 05. By similar reasoning, since Pr[ = 0] = 08, the conditional distribution of 
given  = 0 is Pr[ = 10| = 0] = 0608 = 075 and Pr[ = 30| = 0] = 0208 = 025.

The conditional probabilities for  given  = 1 are therefore

Pr[ = | = 1] =

½
05 for  = 50
05 for  = 30

and for  given  = 0:

Pr[ = | = 0] =

½
025 for  = 30
075 for  = 10

If  and  are statistically independent then the probability of  taking a particular value

is unaffected by the value taken by . In that case the conditional probability Pr[ = | = ]
reduces to the unconditional probability Pr[ = ].

In the example of this appendix  and  are not statistically independent.

B.3.4 Conditional Mean

The conditional expected value of a function ( ) given  =  is an extension of the usual

unconditional expected value of ( ), except that the values () are weighted by the conditional
probabilities of  | =  rather than the unconditional probabilities of  . Thus

E[( )| = ] = (1)× Pr[ = 1| = ] + (2)× Pr[ = 2| = ] + · · ·
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The conditional mean of  given  is the mean of the conditional distribution. This is the

weighted sum of the possible values of  where the weighting is by the conditional probability of

 given . So

E[ | = ] =
X


 × Pr[ = | = ]

For the example of this appendix begin with the conditional mean of  given  = 1. When
 = 1,  takes value 30 with Pr[ = 30| = 1] = 05, and  takes value 50 with Pr[ =
50| = 1] = 05. It follows that E[ | = 1] = 30 × 05 + 50 × 05 = 40. By similar calculation
E[ | = 0] = 10× Pr[ = 10| = 0] + 30× Pr[ = 30| = 0] = 10× 075 + 30× 025 = 15. So

E[ | = ] =

½
40 for  = 1
15 for  = 0

In this example the conditional mean of  given  varies with the value of .

For linear regression it is assumed that the conditional mean E[ | = ] is a linear func-
tion of . Then the population relationship between  and  is a line with intercept denoted 1
and slope denoted 2, so

E[ | = ] = 1 + 2

For example, suppose that E[ | = ] = 3 + 2. Then when  takes the values 1, 2, and

3, for example, the corresponding conditional means are E[ | = 1] = 5, E[ | = 2] = 7, and
E[ | = 3] = 9.

The conditional mean function is not necessarily linear. For example, suppose E[ | = 1] = 5,
E[ | = 2] = 7, and E[ | = 3] = 12. Then the conditional mean function is nonlinear in 

since it increases by 2 from  = 1 to  = 2 but increases by 5 from  = 2 to  = 3. Chapter 15
presents some more general models for linear regression that relax the assumption of a conditional

mean for  that is linear in .

B.3.5 Conditional Variance

The conditional variance of  given  measures the variation in  around the conditional mean

E[ | = ], where the deviation is squared and is weighted by the conditional probabilities. Then

Var[ | = ] = E[( − E[ | = ])2| = ]

is the probability-weighted average of all possible values of (− E[ | = ])2 when  = .

For the example of this appendix, we have already calculated that Pr[ = 50| = 1] = 05,
Pr[ = 30| = 1] = 05, and E[ | = 1] = 40. It follows that Var[ | = 1] = (50− 40)2 × 5 +
(30−40)2× 5 = 100. Similarly, Var[ | = 0] = (30−15)2× 25+(10−15)2× 75 = 75. Note that
the conditional variance here differs according to whether we condition on  = 0 or on  = 1.

Assumption 3 (homoskedastic errors) that Var[| = ] does not depend on  implies that

Var[ | = ] does not depend on . Alternative assumptions regarding Var[| = ] lead to
different ways to estimate the precision of the least squares estimates; see Chapter 7.7.
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B.3.6 Covariance

The covariance of  and  measures the joint variation of  and  around their respective

means. Let  denote E[] and  denote E[ ]. Then

Cov[ ] = E[( − )( −  )]

=
X



X

( − )( −  )× Pr[ = | = ]

It can be shown that Cov[ ] = E[ ]−  .

For the example of this appendix,  = 1× 02 + 0× 08 = 02 and  = 50× 01 + 30× 03 +
10 × 06 = 20 Then Cov[ ] = (1 − 02) × (50 − 20) × 01 + (1 − 02) × (30 − 20) × 01 + (0 −
02)× (30− 20)× 02 + (0− 02)× (10− 20)× 06 = 4. So Cov[ ] = 4.

The covariance between a random variable and a constant is zero. To see this, let  be a

constant in which case  = E[] = . Then Cov[] = E[( −)(−)] = E[( −)(− )]
= E[0] = 0

The law of iterated expectation states that the overall mean (more formally the unconditional

mean) of a random variable is the expected value of the conditional mean, where the expectation

is with respect to the conditioning variable. Thus

E[ ] = E[E[ | = ]] =
X


E[ | = ]× Pr[ = ]

One consequence is that if the regression error term has mean zero conditional on the regressors

then it has unconditional mean zero, since E[| = ] = 0 implies that E[] = E[E[| = ]] =
E[0] = 0

A second consequence is that if the regression error term has mean 0 conditional on regres-

sors then it is uncorrelated with the regressors. To see this use E[] = E[E[| = ]] =
E[×E[| = ]] = E[ × 0] = 0. So Cov[] = E[]−  = 0−  × 0 = 0

B.3.7 Correlation

The correlation coefficient of  and  standardizes the covariance to lie between −1 and 1. We
have

Cor[ ] =
Cov[ ]p

Var[]×Var[ ] 

For the example of this appendix, Var[] = (1−02)2×02+(0−08)2×08 = 016 and Var[ ] =
(50−20)2× 01+(30− 20)2× 03+(10− 20)2× 06 = 180. So Cor[ ] = 4

√
016× 180 = 0745.

In this example  and  are quite highly positively correlated.

The covariance and correlation coefficients are the population analogs of the sample covariance

and sample correlation coefficient that are defined in Chapter 5.4.



Appendix D

Solutions to Selected Exercises

Usually for most odd-numbered questions.

D.1 Solutions: Analysis of Economics Data

1. (a) Numerical time series. (b) Numerical cross-section data. (c) Numerical panel data.

(d) Categorical cross-section. data. (e) Numerical repeated cross-section.

3. (a) Observational. (b) Experimental. (c) Observational.

D.2 Solutions: Univariate Data Summary

1. (a) 1+1+1+1+1=5. (b) (1+2+3+4+5)=15. (c) 110. (d) 2.28333. (e) 55.

3. (a)
P3

=1 1 = 11 + 12 + 13 = 15.
P3

=1 2 = 21 + 22 + 23 = 18
(b)

P2
=1 1 = 11 + 21 = 5 + 8 = 13.

P2
=1 2 = 12 + 22 = 9;

P2
=1 13 + 23 = 11

5. ̄ = 2;  =
p
83 = 1633; CV= 2

1663 = 1225; Skew= 0(832)
32 = 0; Kurt= (324)(84)2 =

2

7. Only the mean changes. It becomes 4.

9. 100± 3× 14 = (58 142) as 99.7% are within 3 standard deviations of the mean

11. (a) Median. (b) Mean. (c) No. (d) 12.

13. (b) Data appear right-skewed: skewness 156  0 (and mean= 253910  median= 244000).
(c) No. Histogram is clearly right-skewed. (d) No. Kernel density estimate is right-skewed.

15. (b) ̄ = 13033333;  = 1991072; interquartile range (12, 14).

17. (b) ̄ = 27;  = 08932495; interquartile range (2.1, 3.3).

475
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21. (a) Somewhat right-skewed (1.01) and excess kurtosis (4.543). (b) Quite right-skewed.

(c) Quite volatile - big peak in 2000 (technology stocks bubble) plus other peaks including

around 1929 (before the Great Depression) and 2018. (d) Yes - over twice the mean (and

median) in 2020.

23. (b) Yes (aside from very small computational error). (c) No. Not normal and big spike at

low value reflecting the early periods. (d) Yes, the three series appear to move together.

25. (a) Yes. (d) Estimate in (b) is much more volatile than that in (c).

D.3 Solutions: The Sample Mean

1. (a)  = 1000× 08 + 4000× 02 = 1,800.
(b) 2 = (1000− 1800)2 × 08 + (5000− 1800)2 × 02 = 2,560,000. (c)  = 1,600.

3. (a)  + 3 has mean 5 + 3 = 8, variance 4 (and standard deviation
√
4 = 2).

(b) E[2] = 2 × 5 = 10, Var[2] = 22 × 4 = 16. (c) E[2 + 3] = 2 × 5 + 3 = 13,
Var[2 + 3] = 22 × 4 = 16. (d) E[( − 5)2] = 02 = 0, Var[( − 5)2] = 422 = 1.

5. (a) 200. (b) 2 = 400/100 = 4;  =
√
4 = 2. (c) Most likely given sample size of 100 is

reasonably large.

7. (a) Yes. (b) 100. (c) Yes. (d) Data appear random. (e) Observations appear unrelated.

9. E[̄] unchanged, Var[̄] one-quarter as large, standard deviation of ̄ one-half as large.

11. (a)  = 1× 1
6 + 0× 5

6 =
1
6 ' 0167. (b) 2 = (1− 1

6)
2 × 1

6 + (0− 1
6)
2 × 5

6 =
5
36 ' 0139. (d)

Sample mean and variance should be quite close to 0.167 and 0.139. (e) No.

12. (a) Yes since ̄ = 0169975 ' 1
6 and  = 0037151 '

q
5
36100 = 0037268. (b) Histogram is

not exactly normal. With a larger sample size we would get closer to exactly normal.

15. (a) E[̄] = 5,000, St.Dev.[̄] = 20000
√
10000 = 200. (b) Low probability of 0.025 of making

a loss this large since $5,400 is two standard deviations higher than the expected average loss

of $5,000 and ̄ is normally distributed given the large sample. Pr(  5400) = 00228

17. (a) ̄ = 1000564 and (̄) = 797252 are close to  = 100 and 
√
 = 16

√
4 = 8.

(b) The mean of (̄) = 1475808 is close to  = 16. (c) ( − )(
√
) = ( − 100)8 is

normal even in small samples as  is normal. (d)  has mean 0007 ' 0, standard deviation
0997 ' 1, skewness 0028 ' 0, kurtosis 3177 ' 3. (e) Yes, it appears standard normal.

19. (a) Representative. (b) Most likely unrepresentative. (c) Most likely unrepresentative.

21. (a) 7436390. (b) 467.099. (c) Unweighted mean is 446.66. (d) 32578.1.

(e)
√
325781 = 18049 vs. 181.31. (f) In Stata sum net_worth[weight=number].
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23. (b) Yes, essentially 0 and 1. (c) No. They are very left skewed. (d) Yes.

25. (a) Yes. (d) The part (b) measure is much more variable than the part (c) measure.

D.4 Solutions: Statistical Inference for the Mean

1. (a) 0.028998. (b) 0.057996. (c) 1.717144. (d) 2.073873.

3. (a) 0.025. (b) 0.05. (c) 2.0 (or 1.96 more precise). (d) 2.0 (or 1.96).

5. (b) The 0 are draws of  = ( − ) where ’s are normal so expect  has mean 0,

variance 1 and standard normal distribution.

(c) Similar as the 1,000  0s have mean 0.00705 and standard deviation 0.996.
(d) The 0 are draws of  = ( − )() where ’s are normal so  is —distributed

with − 1 degrees of freedom and here − 1 = 3. (e) The 1,000 0s have mean 0.00415 and
variance 2.197. (f) The density for  is squashed (lower peak and fatter tails) compared to

density for .

7. ̄± 30;10 × (̄) = 40± 13× 10 = (27 53)
9. ̄± 24;025 × (20

√
25) = 10± 2064× 4 = (1744 18256).

11. (b) (239688 268133).
(c) ̄± 28;025 × (̄) = 2539103± 20484071× 3739071√29 = (239688 268133)

13. (a) Wider. (b) Narrower. (c) Similar width but larger values. (d) Wider.

15. (b) 0 :  = 270000 against  :  6= 270000.  = 00280  005 so reject 0 at level 0.05.

(c)  = 28025 = 20484. || = 231730  20484 so reject 0 at level 0.05.

(d)  = (̄− ∗)(̄) = (2539103− 270000)(3739071√29) = −231730.
 = Pr[|28|  |− 231730|] = 00280  005

17. (a) 20
√
25 = 04. (b) 12± 24024 × 04 = (03744 20256).

(c) 0 :  = 0 vs.  :  6= 0.  = 1204 = 3. Reject 0 as ||  24;025 = 2064 or as
 = 0006  005.
(d) 0:  0 vs. : ≥ 0.  = 3. Reject 0 as ||  24;05 = 1711 or as  = 0003  005
Support the claim.

(e) Observations have common mean and variance and are independent (and for exact 

distribution are normally distributed).

(f) Observations are unlikely to be independent and are possibly (downward) biased.

19. (a) Less likely -   005 was given so   001. (b) More likely given more precise estimation.

21. (b) 951 of 1,000 or 95.1% of 95% confidence intervals included 100, close to 95% as expected.

(d) 49 of 1,000 or 4.9% of tests rejected, close to 5% as expected.
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23. Answers will vary with package. Stata gave the following.

(b) 953 of 1,000 or 95.3% of 95% confidence intervals included 200.
(d) 47 of 1,000 or 4.7% of tests rejected 0 :  = 200.

25. (a) 1973
√
109 = 1890. (b) (29.06, 36.56). (c) 0 :  = 35 against  :  6= 35.  = −1159.

Do not reject 0 as ||  108;025 = 1982 or as  = 0249  005. (d) 0 :   35 against
 :   35.  = −1159. Do not reject 0 as   −108;05 = −1659 or as  = 0124  005.

27. (a) Do not reject as  = 00868  005. (b) Reject as  = 00434  005.
(c) 62468± 8405 × 100796 = (4570 7923).
(d)  = (62468− 35)10079 = 275 has  = 0007  005. So reject 0.

29. (b) (2.245, 2.515). (c) 0 :  = 25 against  :  6= 25,  = (3281 − 35)189 = −1758
 = 0081  005 so do not reject 0 at level 0.05.

(d) 0 :  ≥ 25 against  :   25,  = −1758  = 0040  005 so reject 0 at level 0.05.

31. (a) 25± 2× 4 = (17 33). (b) 2× 4 = 8. (c)  = (25− 15)4 = 25. Reject 0 at level 0.05.

33. (a) ̄ = 5501025 = 05366 and (̄) =
p
5366× (1− 5366)1025) = 00156.

(b) 05366± 1960× 00156 = (0.506,0.567). (c) 2× 00156 = 00312.
(d) 0 :  ≤ 05 vs.  :   05.  = (05366− 05)00156 = 235. Reject 0 at level 005
as  = 235  1645 or  = 00094  005.

D.5 Solutions: Bivariate Data Summary

1. (a) Yes. (b) ̄ = 4, ̄ = 14;
P3

=1( − ̄)( − ̄) = (2− 4)(4− 14) + (4− 4)(10− 14) + (6−
4)(28−14) = 48, so Cov( ) = 482 = 24. Unclear whether this means a strong relationship.
(c)

P3
=1( − ̄)2 = (2 − 4)2 + (4 − 4)2 + (6 − 4)2 = 8. P3

=1( − ̄)2 = (4 − 14)2 + (10 −
14)2 + (28− 14)2 = 312; Cor( ) = 48√8× 312 = 09608. Yes, very strong as close to 1

3. (a) It is not immediately obvious. It requires some calculation. e.g. dvisits=0 for 82%

(100× 36864491) with hospadmi=0 compared to only 68% with hospadmi=1.

(b) Now clearer. e.g. if no relationship we expect dvisits=0 and hospadmi=0 for 3583.3 which

is less than actual 3686. (c) Correlation is 0.2484 so clearly a positive relationship.

5. (a) ̄ = 4, ̄ = 14;
P3

=1(−̄)(−̄) = (2−4)(4−14)+(4−4)(10−14)+(6−4)(28−14) = 48.P3
=1( − ̄)2 = (2− 4)2 + (4− 4)2 + (6− 4)2 = 8. So 2 = 488 = 6.

(b) 1 = ̄ − 2̄ = 14− 4× 6 = −10
7. (a)-(b) indicate a strong relationship. (c) Correlation = 0.9315. (d) price = 82559 + 292×size.
(e) One more square foot is associated with a $292 increase in house price.

9. (a) 10(
√
100×√25) = 02. (b) 10100 = 01. (c) 02 standard deviations.

11. (c) 0.9949. (b) realgdppc = 17024 + 169.7×quarter. (e) Real GDP per capita rises on average
by $169.71 each quarter.
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Second decimal value of z
z 0 1 2 3 4 5 6 7 8 9

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Example: The probability that standard normal is less than 0.65 equals 0.7422.
Example: The probability that standard normal is greater than 0.65 equals 1-0.7422 = 0.2378.

Figure E.1: Standard normal distribution: Probabilities in the left tail
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Significance Level
Degrees 20% (2-sided) 10% (2-sided) 5% (2-sided) 2% (2-sided) 1% (2-sided)

of Freedom 10%(1-sided) 5%(1-sided) 2.5%(1-sided) 1%(1-sided) 0.5%(1-sided)
1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17
11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75
60 1.30 1.67 2.00 2.39 2.66
90 1.29 1.66 1.99 2.37 2.63
120 1.29 1.66 1.98 2.36 2.62

Infinity 1.28 1.65 1.96 2.33 2.58

Example: For one-sided test at 10% the area to the right of the critical value is 0.10.
Example: For two-sided test at 10% the area to the right of the critical value is 0.05
and the area to the left of minus one times the critical value is also 0.05.

Figure E.2: Student t distribution: Key critical values




