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Chapter 3

CHAPTER 3: The Sample Mean

Now consider statistical inference
I extrapolating from sample to population
I here from sample mean x̄ to population mean µ.

Basic idea is that the sample values x1, ..., xn (lower case)
I are realizations of random variables X1, ...,Xn (upper case)

So the sample mean x̄ = (x1 + � � �+ xn)/n
I is a realization of the random variable X̄ = (X1 + � � �+ Xn)/n

This chapter: distribution of X̄ from underlying distribution of X .

Next chapter: The two main tools of statistical inference
I Con�dence intervals for the population mean µ
I Hypothesis tests on µ.
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3.1 Random Variables Random Variables

3.1 Random Variables

A random variable is a variable whose value is determined by the
outcome of an experiment.

An experiment is an operation whose outcome cannot be predicted
with certainty.

Example: the experiment is tossing a coin and the random variable
takes value 1 if heads and 0 if tails.

Example: the experiment is randomly selecting a person from the
population and the associated random variable takes value equal to
their annual earnings.

Standard notation
I X (or Y or Z ) denotes a random variable
I x (or y or z) denotes the values taken by X (or Y or Z ).
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3.1 Random Variables Random Variables

Example: Coin toss

Simplest case is a random variable that takes one of only two possible
values.

Consider toss of fair coin with X = 1 if heads and X = 0 if tails.
Then

X =
�
0 with probability 0.5
1 with probability 0.5.

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.3 The Sample Mean November 2022 5 / 37



3.1 Random Variables Mean of a Random Variable

Mean of a Random Variable

Mean of X , denoted µ or µX
I is the probability-weighted average of all possible values of X in the
population.

µ is also denoted E[X ]
I the expected value of the random variable X
I the long-run average value expected if we draw a value of X at
random, draw a second value of X at random, and so on, and then
obtain the average of these values.

µ � E[X ] = x1 � Pr[X = x1 ] + x2 � Pr[X = x2 ] + � � �
= ∑x x � Pr[X = x ].

Note that
I ∑x means the sum over all possible values x can take
I and the possible values of x are denoted x1, x2, x3,...
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3.1 Random Variables Mean of a Random Variable

Example of Mean

Fair coin toss: X takes values 0 or 1 with equal probabilities

µ = ∑x x � Pr[X = x ]
= Pr[X = 0]� 0+ Pr[X = 1]� 1
= 0.5� 0+ 0.5� 1
= 0.5.

Unfair coin: X = 1 with probability 0.6 and X = 0 with probability
0.4

I µ = 0� 0.4+ 1� 0.6 = 0.6.
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3.1 Random Variables Variance and Standard Deviation

Variance and Standard Deviation

Variance σ2

I measures the variability in X around µ
I equals the expected value of (X � µ)2, the squared deviation of X
from the mean µ

I probability-weighted average of x�1 , x
�
2 , ...

σ2 � E[(X � µ)2 ]

= (x1 � µ)2 � Pr[X = x1 ] + (x2 � µ)2 � Pr[X = x2 ] + � � �
= ∑x (x � µ)2 � Pr[X = x ].

Population standard deviation σ is square root of the variance
I measured in the same units as X .
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3.1 Random Variables Variance and Standard Deviation

Example of Variance and Standard Deviation

Fair coin toss: X takes values 0 or 1 with equal probabilities so
µ = 0.5.

Variance

σ2 = ∑x (x � µ)2 � Pr[X = x ]
= Pr(0� 0.5)2 � [X = 0] + (1� 0.5)2 � Pr[X = 1]
= 0.25� 0.5+ 0.25� 0.5
= 0.25.

Standard deviation
σ =

p
0.25 ' 0.5.
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3.2 Random Samples

3.2 Random Samples

A sample of size n takes values denoted x1, ..., xn.

These values are realizations or outcomes of the random variables
X1,X2, ...,Xn.

Example: four consecutive coin tosses with results tails, heads, heads
and heads

I random variable X1 has realized value x1 = 0
I random variable X2 takes value x2 = 1
I random variable X3 takes value x3 = 1
I random variable X4 takes value x4 = 1.
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3.2 Random Samples Sample Mean

Sample Mean is a Random Variable

Sample of size n has observed values x 1, x2, ..., xn.
I These are realizations of the random variables X 1,X2, ...,Xn .

Sample mean is the average

x̄ = (x1 + x2 + � � �+ xn)/n =
1
n ∑n

i=1 xi

This is a realization of the random variable

X̄ = (X1 + X2 + � � �+ Xn)/n =
1
n ∑n

i=1 Xi .
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3.2 Random Samples Sample Variance and Standard Deviation

Aside: Sample Variance and Standard Deviation

Similarly any other sample statistic (such as the median) is a
realization of a random variable

In addition to the sample mean we focus on the sample variance and
sample standard deviation.

Sample variance is average of squared deviations of x around x̄
I not around µ since µ is unknown

s2 =
1

n� 1 ∑n
i=1(xi � x̄)

2.

The sample variance is a realization of the random variable

S2 =
1

n� 1 ∑n
i=1(Xi � X̄ )

2.

Taking the square root gives the sample standard deviation s which
is a realization of the random variable S .
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3.3 Sample Generated by an Experiment Coin Tosses

3.3 Sample Generated from an Experiment: Coin Tosses

We consider a simple experiment that generates many samples
I hence many sample means x̄
I then summarize the resulting distribution of the many x̄ .

Population: Outcomes from experiment of tossing a coin
I X = 1 if heads and X = 0 if tails
I Population mean µ = E[X ] = 0.5 and standard deviation σ = 0.5.

Sample: n = 30
I random sample of size 30 from 30 coin tosses
I there are 10 heads and 20 tails, so x̄ = 10/30 = 0.333
I histogram of this single sample is given in left panel of next slide.
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3.3 Sample Generated by an Experiment Coin Tosses

Example: Coin Tosses (continued)

Left panel: x�s from 1 sample of size 30 with 20 heads and 10 tails

Right panel: x̄ 0s for 400 samples of size 30
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3.3 Sample Generated by an Experiment Coin Tosses

Example: Coin Tosses (continued)

Randomly draw 400 di¤erent samples, each of size 30
I then x̄1 = .333, x̄2 = .500, x̄3 = 533,....

Histogram (plus kernel density estimate) for the 400 means from the
400 samples of size 30 is given in right panel of previous slide.

I roughly centered on the population mean

F the average of the 400 means is 0.499, close to µ = 0.5.

I much less variability in these 400 means than in the original population

F the standard deviation of the 400 means is 0.086
F much less than the population standard deviation of σ = 0.5

I the density estimate is roughly that of the normal.
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3.4 Properties of the Sample Mean

3.4 Properties of the Sample Mean

The properties of X̄ depend on the properties of X1,X2, ...,Xn
I such as the means and variances of X1,X2, ...,Xn
I and whether their values depend in part on other values.

In this chapter we consider the simplest and standard set of
assumptions in introductory statistics

I X1,X2, ...,Xn have common mean µ and common variance σ2

I X1,X2, ...,Xn are statistically independent

F statistical independence means that the value taken by X2, for example,
is not in�uenced by the value taken by X1,X3, ...,Xn .

In later chapters we relax these assumptions
I e.g. regression allows for di¤erent means for di¤erent observations.
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3.4 Properties of the Sample Mean Population Assumptions

Population Assumptions

Population
I = set of all observations (or experimental outcomes).

Sample
I = subset selected from the population.

Properties of x̄ depend on the random variable X̄
I hence on assumptions about process generating X1,X2, ...,Xn .

We assume a simple random sample where
I A. Xi has common mean µ : E[Xi ] = µ for all i .
I B. Xi has common variance σ2 : Var[Xi ] = σ2 for all i .
I C. Xi is statistically independent of Xj , i 6= j .

Shorthand notation: Xi � (µ, σ2)
I means Xi are distributed with mean µ and variance σ2.
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3.4 Properties of the Sample Mean Mean and Variance of the Sample Mean

Mean and Variance of the Sample Mean

Consider X̄ = (X1 + X2 + � � �+ Xn)/n for Xi � (µ, σ2).
The (population) mean of the sample mean is

µX̄ � E[X̄ ] = µ.

The (population) variance of the sample mean is

σ2X̄ � E[(X̄ � µX̄ )
2] =

σ2

n
,

The (population) standard deviation is σX̄ = σ/
p
n.

Sample mean is less variable than the underlying data
I since σ2X̄ < σ2.

Sample mean is close to µ as n! ∞
I since E[X̄ ] = µ and variance σ2X̄ = σ2/n! 0 as n! ∞.
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3.4 Properties of the Sample Mean Mean of the Sample Mean

Aside: Proof for Mean of the Sample Mean

Recall
X̄ = (X1 + X2 + � � �+ Xn)/n

Proof uses
I E[aX ] = aE[X ]
I E[X + Y ] = E[X ]+E[Y ]
and assumption A (common mean of Xi ).

Then

E[X̄ ] = E[ 1n (X1 + X2 + � � �+ Xn)]
= 1

nE [X1 + X2 + � � �+ Xn ]
= 1

n fE[X1] + E[X2] + � � �+ E[Xn ]g
= 1

n fµ+ µ+ � � �+ µg
= µ.
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3.4 Properties of the Sample Mean Variance of the Sample Mean

Aside: Variance of the Population Mean

Proof in Appendix B.2 uses that
I Var[aX ] = a2E[X ] in general
I Var[X + Y ] =Var[X ]+Var[Y ] for independent variables
I and assumptions A-C.

Then
Var[X̄ ] = Var

� 1
n (X1 + X2 + ...+ Xn)

�
= ( 1n )

2Var [X1 + X2 + ...+ Xn ]
=
� 1
n

�2 fVar [X1] + � � �+ Var [Xn ]g
=
� 1
n

�2
σ2 + � � �+

� 1
n

�2
σ2

=
� 1
n

�2 fσ2 + � � �+ σ2g
=
� 1
n

�2 � nσ2

= 1
nσ2.
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3.4 Properties of the Sample Mean Normal Distribution and the Central Limit Theorem

Normal Distribution and the Central Limit Theorem

We have shown to date that X̄ � (µ, σ2/n)
In general, subtracting the mean and dividing by the standard
deviation yields a random variable with mean 0 and variance 1.

So here the standardized variable

Z =
X̄ � µ

σ/
p
n
� (0, 1).

The central limit theorem (a remarkable result) proves normality as
the sample size gets large

Z � N(0, 1) as n! ∞.

The central limit theorem holds under assumptions A-C
I and also under some weaker conditions.
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3.4 Properties of the Sample Mean Normal Distribution and the Central Limit Theorem

Normal Distribution (continued)

Now convert back to the original X̄ .

We have

Z =
X̄ � µ

σ/
p
n
� N(0, 1) as n! ∞.

Then X̄ is approximately normally distributed in large samples

X̄ � N(µ, σ2/n) approximately for large n.

We will use this result to do statistical inference on µ.

However, the variance σ2/n is unknown as σ2 is unknown
I we will have to get an estimate
I replace σ2 by its estimate s2
I where s is the sample standard deviation of X .
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3.4 Properties of the Sample Mean Standard Error of the Sample Mean

Standard Error of the Sample Mean

Estimated variance of X̄ is

s2X̄ =
s2

n
=

1
n�1 ∑i (xi � x̄)2

n
,

Estimated standard deviation of X̄

sX̄ =
sp
n
=

q
1
n�1 ∑i (xi � x̄)2

p
n

.

sX̄ is called the standard error of the sample mean X̄ .
The term �standard error�means estimated standard deviation

I various estimators each have a distinct standard error
I a reported �standard error� in computer output need not be sX̄ .

Use the notation
se(X̄ ) = s/

p
n.
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3.4 Properties of the Sample Mean Summary for the Sample Mean

Summary for the Sample Mean

1 Sample values x1, ..., xn are observed values of the random variables
X1, ...,Xn.

2 Individual Xi have common mean µ and variance σ2 and are
independent.

3 Average X̄ of n draws of Xi has mean µ and variance σ2/n.
4 Standardized statistic Z = (X̄ � µ)/(σ/

p
n) � (0, 1) has mean 0

and variance 1.
5 Z is standard normal as size n! ∞ by the central limit theorem.
6 For large n a good approximation is that X̄ � N(µ, σ2/n)
7 The standard error of X̄ equals s/

p
n, where �standard error� is

general terminology for �estimated standard deviation�.
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3.5 Sampling from a Finite Population 1880 Census

3.5 Sampling from a Population: 1880 Census

Now consider an example of sampling from a population.

Population: N = 50,169,452
I all people recorded as living in the U.S. in 1880
I the average age is 24.13 years, so µ = 24.13
I the standard deviation of age is 18.61, so σ = 18.61
I histogram is given in the next slide.
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3.5 Sampling from a Finite Population 1880 Census

Example: 1880 Census (continued)
Population

I Probabilities decline with age (clearly not the normal)
I Peaks due to rounding at �ve and ten years
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3.5 Sampling from a Finite Population 1880 Census

Example: 1880 Census (continued)

Single sample: n = 25
I random sample of size 25 from the entire U.S. population
I the average age is 27.84, so x= 27.84
I the standard deviation of age is 20.71, so s = 20.71
I these are similar to, but not exactly equal to, µ and σ
I histogram of x 0s in a single sample is given in left panel of next slide.

Many samples of size 25
I randomly draw 100 di¤erent samples, each of size 25
I then x̄1 = 27.84, x̄2 = 19.40, x̄3 = 23.28 years, .....
I average of the 100 sample means is 23.78, close to µ = 24.13.
I standard deviation of the 100 means is 3.76, close to

σ/
p
n = 18.61/

p
25 = 3.72.

I histogram of x̄ 0s across 100 samples is given in right panel of next slide.
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3.5 Sampling from a Finite Population 1880 Census

Example: 1880 Census (continued)

100 di¤erent means from 100 di¤erent samples, each of size 25
I histogram (left) and kernel density estimate (right)
I looks like normal with mean µ and standard deviation much less than σ
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3.6 Estimation of the Sample Mean

3.6 Estimation of the Sample Mean

Desire a good point estimate of population mean µ

I why use x̄ rather than some other estimate?

A desirable estimator of µ has distribution
I centered on µ
I with as little variability around µ as possible.

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.3 The Sample Mean November 2022 29 / 37



3.6 Estimation of the Sample Mean Parameter, Estimator and Estimate

Parameter, Estimator and Estimate

A parameter is a constant that determines in part the distribution of
X .

An estimator is a method for estimating a parameter.
An estimate is the particular value of the estimator obtained from
the sample.

For estimation of the mean of X using the sample mean
I the parameter is µ
I the estimator is the random variable X̄
I the estimate is the sample value x .
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3.6 Estimation of the Sample Mean Unbiased Estimators

Unbiased Estimators

An unbiased estimator of a population parameter
I has expected value that equals the population parameter.

The sample mean is unbiased for µ

I since E[X̄ ] = µ.
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3.6 Estimation of the Sample Mean Unbiased Estimators

Minimum Variance Estimators

Other estimators may also be unbiased and consistent for µ

I e.g. sample median in the case where X is symmetrically distributed
I discriminate between such estimators using their variance.

A best estimator or e¢ cient estimator
I has minimum variance among the class of consistent estimators (or of
unbiased estimators).

Under assumptions A-C the sample mean has variance σ2/n
I for X that is normal, Bernoulli, binomial or Poisson no other unbiased
estimator has lower variance

I for X with other distributions the sample mean is often close to having
the lowest variance

I generally the sample mean is used to estimate µ.
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3.6 Estimation of the Sample Mean Consistent Estimators

Consistent Estimators

Consistency is a more advanced concept that considers behavior as
the sample size goes to in�nity.

A consistent estimator of a population parameter
I is one that is almost certainly arbitrarily close to the population
parameter as the sample size gets very large.

A su¢ cient condition for consistency is
I any bias disappears as the sample size gets very large
I the variance goes to zero as the sample size gets very large

The sample mean is consistent for µ under assumptions A-C
I it is unbiased
I the variance σ2X̄ = σ2/n! 0 as n! ∞.
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3.7 Samples other than Simple Random Samples

3.7 Samples other than Simple Random Samples

Recall simple random sample means data are independent and from
the same distribution.

Representative Samples
I Still from same distribution but no longer statistically independent.
I Then can adapt methods using an alternative formula for se(x̄).

Nonrepresentative samples
I Now di¤erent observations may have di¤erent µ
I e.g. Survey readers of Golf Digest not representative of population.
I Big problem.

Weighted mean can still be used if population weights are known
I πi = probability that i th observation is included in the sample.
I sample weights wi = 1/πi
I weighted mean x̄w = [∑ni=1 wi xi ] / [∑

n
i=1 wi ] .
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3.8 Computer Generation of a Random Variable

3.8 Computer Generation of a Random Variable

A (pseudo) uniform random number generator
I creates values between 0 and 1
I any value between 0 and 1 is equally likely
I successive values appear to be independent of each other.

To simulate 30 coin tosses
I draw 30 uniform random numbers
I result is heads if the uniform random number exceeds 0.5

For Census example
I if uniform random number is between 0 and 1/N, where N =
50,169,452, we choose the �rst person, etcetera

The sequence depends on the starting value called the seed
I always set the seed (e.g. equal to 10101).
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3.8 Computer Generation of a Random Variable

Example Stata Code to give 400 sample means

The following advanced Stata code obtains the 400 sample means in
the coin toss example of Chapter 3.2

I the program generates one sample of size 30 of x equal 1 or 0
I the simulate command does this 400 times
I this gives 400 observations on variable xbar.

program onesample, rclass
drop _all
set obs 30
generate u = runiform()
generate x = u > 0.5
summarize x
return scalar xbar = r(mean)

end
simulate xbar=r(xbar), seed(10101) reps(400): onesample
summarize
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Some in-class Exercises

Some in-class Exercises

1 Suppose X = 100 with probability 0.8 and X = 600 with probability
0.2. Find the mean, variance and standard deviation of X .

2 Consider random samples of size 25 from the random variable X that
has mean 100 and variance 400. Give the mean, variance and
standard deviation of the mean X .
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