Analysis of Economics Data Chapter 3 The Sample Mean

> © A. Colin Cameron Univ. of Calif. Davis

> > November 2022

© A. Colin Cameron Univ. of Calif. Davis

AED Ch.3 The Sample Mean

CHAPTER 3: The Sample Mean

Now consider statistical inference

- extrapolating from sample to population
- here from sample mean \bar{x} to population mean μ .
- Basic idea is that the sample values $x_1, ..., x_n$ (lower case)
 - are realizations of random variables $X_1, ..., X_n$ (upper case)
- So the sample mean $\bar{x} = (x_1 + \cdots + x_n)/n$
 - ▶ is a realization of the random variable $\bar{X} = (X_1 + \cdots + X_n)/n$
- This chapter: distribution of \overline{X} from underlying distribution of X.
- Next chapter: The two main tools of statistical inference
 - Confidence intervals for the population mean μ
 - Hypothesis tests on µ.

・ 同 ト ・ ヨ ト ・ ヨ ト

Chapter 3

Outline

- Random Variables
- Sample Generated by an Experiment
- 8 Random Samples
- Properties of the Sample Mean
- Sampling from a Finite Population
- Stimation of the Population Mean
- Nonrepresentative Samples
- Omputer Generation of a Random Sample
 - Datasets: COINTOSSMEANS, CENSUSAGEMEANS

3.1 Random Variables

- A **random variable** is a variable whose value is determined by the outcome of an experiment.
- An **experiment** is an operation whose outcome cannot be predicted with certainty.
- Example: the experiment is tossing a coin and the random variable takes value 1 if heads and 0 if tails.
- Example: the experiment is randomly selecting a person from the population and the associated random variable takes value equal to their annual earnings.
- Standard notation
 - ► X (or Y or Z) denotes a random variable
 - x (or y or z) denotes the **values taken** by X (or Y or Z).

Example: Coin toss

- Simplest case is a random variable that takes one of only two possible values.
- Consider toss of fair coin with X = 1 if heads and X = 0 if tails. Then

$$X = \left\{egin{array}{cc} 0 & {
m with \ probability \ 0.5}\ 1 & {
m with \ probability \ 0.5.} \end{array}
ight.$$

Mean of a Random Variable

- Mean of X, denoted μ or μ_X
 - is the probability-weighted average of all possible values of X in the population.
- μ is also denoted E[X]
 - the expected value of the random variable X
 - the long-run average value expected if we draw a value of X at random, draw a second value of X at random, and so on, and then obtain the average of these values.

$$\mu \equiv \mathsf{E}[X] = x_1 \times \mathsf{Pr}[X = x_1] + x_2 \times \mathsf{Pr}[X = x_2] + \cdots$$
$$= \sum_x x \cdot \mathsf{Pr}[X = x].$$

Note that

- \sum_{x} means the sum over all possible values x can take
- ▶ and the possible values of x are denoted x₁, x₂, x₃,...

Example of Mean

• Fair coin toss: X takes values 0 or 1 with equal probabilities

$$\mu = \sum_{x} x \times \Pr[X = x]$$

=
$$\Pr[X = 0] \times 0 + \Pr[X = 1] \times 1$$

=
$$0.5 \times 0 + 0.5 \times 1$$

=
$$0.5.$$

• Unfair coin: X = 1 with probability 0.6 and X = 0 with probability 0.4

•
$$\mu = 0 \times 0.4 + 1 \times 0.6 = 0.6$$
.

(日) (同) (三) (三)

Variance and Standard Deviation

• Variance σ^2

(

- measures the variability in X around μ
- equals the expected value of $(X \mu)^2$, the squared deviation of X from the mean μ
- probability-weighted average of x_1^* , x_2^* , ...

$$\begin{aligned} \tau^2 &\equiv & \mathsf{E}[(X-\mu)^2] \\ &= & (x_1-\mu)^2 \times \Pr[X=x_1] + (x_2-\mu)^2 \times \Pr[X=x_2] + \cdots \\ &= & \sum_x (x-\mu)^2 \times \Pr[X=x]. \end{aligned}$$

- Population standard deviation σ is square root of the variance
 - measured in the same units as X.

Example of Variance and Standard Deviation

- Fair coin toss: X takes values 0 or 1 with equal probabilities so $\mu = 0.5$.
- Variance

$$\sigma^{2} = \sum_{x} (x - \mu)^{2} \times \Pr[X = x]$$

= $\Pr(0 - 0.5)^{2} \times [X = 0] + (1 - 0.5)^{2} \times \Pr[X = 1]$
= $0.25 \times 0.5 + 0.25 \times 0.5$
= 0.25 .

Standard deviation

$$\sigma = \sqrt{0.25} \simeq 0.5.$$

3.2 Random Samples

- A sample of size *n* takes values denoted *x*₁, ..., *x_n*.
- These values are realizations or outcomes of the random variables $X_1, X_2, ..., X_n$.
- Example: four consecutive coin tosses with results tails, heads, heads and heads
 - random variable X_1 has realized value $x_1 = 0$
 - random variable X_2 takes value $x_2 = 1$
 - random variable X_3 takes value $x_3 = 1$
 - random variable X₄ takes value x₄ = 1.

Sample Mean is a Random Variable

- **Sample** of size *n* has observed values *x*₁, *x*₂, ..., *x_n*.
 - These are realizations of the random variables $X_1, X_2, ..., X_n$.
- Sample mean is the average

$$\bar{x} = (x_1 + x_2 + \dots + x_n) / n = \frac{1}{n} \sum_{i=1}^n x_i$$

• This is a realization of the random variable

$$\bar{X} = (X_1 + X_2 + \cdots + X_n) / n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Aside: Sample Variance and Standard Deviation

- Similarly any other sample statistic (such as the median) is a realization of a random variable
- In addition to the sample mean we focus on the sample variance and sample standard deviation.
- Sample variance is average of squared deviations of x around \bar{x}
 - not around μ since μ is unknown

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$

• The sample variance is a realization of the random variable

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

• Taking the square root gives the **sample standard deviation** *s* which is a realization of the random variable *S*.

Coin Tosses

3.3 Sample Generated from an Experiment: Coin Tosses

We consider a simple experiment that generates many samples

- hence many sample means \bar{x}
- then summarize the resulting distribution of the many \bar{x} .
- **Population:** Outcomes from experiment of tossing a coin
 - X = 1 if heads and X = 0 if tails
 - Population mean $\mu = E[X] = 0.5$ and standard deviation $\sigma = 0.5$.

• **Sample:** *n* = 30

- random sample of size 30 from 30 coin tosses
- there are 10 heads and 20 tails, so $\bar{x} = 10/30 = 0.333$
- histogram of this single sample is given in left panel of next slide.

イロト イポト イヨト イヨト

Coin Tosses

Example: Coin Tosses (continued)

- Left panel: x's from 1 sample of size 30 with 20 heads and 10 tails •
- Right panel: $\bar{x}'s$ for 400 samples of size 30 •

Example: Coin Tosses (continued)

- Randomly draw 400 different samples, each of size 30
 - then $\bar{x}_1 = .333$, $\bar{x}_2 = .500$, $\bar{x}_3 = 533$,....
- Histogram (plus kernel density estimate) for the 400 means from the 400 samples of size 30 is given in right panel of previous slide.
 - roughly centered on the population mean
 - ***** the average of the 400 means is 0.499, close to $\mu = 0.5$.
 - much less variability in these 400 means than in the original population
 - the standard deviation of the 400 means is 0.086
 - \star much less than the population standard deviation of $\sigma = 0.5$
 - the density estimate is roughly that of the normal.

- 3

イロト イポト イヨト イヨト

3.4 Properties of the Sample Mean

- The properties of \bar{X} depend on the properties of $X_1, X_2, ..., X_n$
 - ▶ such as the means and variances of X₁, X₂, ..., X_n
 - and whether their values depend in part on other values.
- In this chapter we consider the simplest and standard set of assumptions in introductory statistics
 - $X_1, X_2, ..., X_n$ have common mean μ and common variance σ^2
 - $X_1, X_2, ..., X_n$ are statistically independent
 - statistical independence means that the value taken by X₂, for example, is not influenced by the value taken by X₁, X₃, ..., X_n.
- In later chapters we relax these assumptions
 - e.g. regression allows for different means for different observations.

Population Assumptions

- Population
 - ▶ = set of all observations (or experimental outcomes).
- Sample
 - subset selected from the population.
- Properties of \bar{x} depend on the random variable \bar{X}
 - hence on assumptions about process generating $X_1, X_2, ..., X_n$.
- We assume a simple random sample where
 - **A.** X_i has common mean $\mu : E[X_i] = \mu$ for all *i*.
 - **B.** X_i has common variance σ^2 : $Var[X_i] = \sigma^2$ for all *i*.
 - **C.** X_i is statistically independent of X_j , $i \neq j$.
- Shorthand notation: $X_i \sim (\mu, \sigma^2)$
 - means X_i are distributed with mean μ and variance σ^2 .

- 4 回 ト - 4 回 ト

Mean and Variance of the Sample Mean

- Consider $\bar{X} = (X_1 + X_2 + \dots + X_n) / n$ for $X_i \sim (\mu, \sigma^2)$.
- The (population) mean of the sample mean is

$$\mu_{\bar{X}} \equiv \mathsf{E}[\bar{X}] = \mu.$$

• The (population) variance of the sample mean is

$$\sigma_{\bar{X}}^2 \equiv \mathsf{E}[(\bar{X} - \mu_{\bar{X}})^2] = \frac{\sigma^2}{n},$$

- The (population) standard deviation is $\sigma_{\bar{X}} = \sigma / \sqrt{n}$.
- Sample mean is less variable than the underlying data
 - since $\sigma_{\bar{X}}^2 < \sigma^2$.
- Sample mean is close to μ as $n
 ightarrow \infty$
 - since $\mathsf{E}[\bar{X}] = \mu$ and variance $\sigma_{\bar{X}}^2 = \sigma^2 / n \to 0$ as $n \to \infty$.

イロト 不得下 イヨト イヨト 二日

ple Mean Mean of the Sample Mean

Aside: Proof for Mean of the Sample Mean

Recall

$$\bar{X} = (X_1 + X_2 + \dots + X_n) / n$$

Proof uses

Then

$$E[\bar{X}] = E[\frac{1}{n}(X_1 + X_2 + \dots + X_n)]$$

= $\frac{1}{n}E[X_1 + X_2 + \dots + X_n]$
= $\frac{1}{n}\{E[X_1] + E[X_2] + \dots + E[X_n]\}$
= $\frac{1}{n}\{\mu + \mu + \dots + \mu\}$
= μ .

< 🗗 🕨

Aside: Variance of the Population Mean

• Proof in Appendix B.2 uses that

- $Var[aX] = a^2 E[X]$ in general
- Var[X + Y] = Var[X] + Var[Y] for independent variables
- and assumptions A-C.

Then

$$\begin{aligned} \mathsf{Var}[\bar{X}] &= \mathsf{Var}\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\right] \\ &= \left(\frac{1}{n}\right)^2 \mathsf{Var}\left[X_1 + X_2 + \dots + X_n\right] \\ &= \left(\frac{1}{n}\right)^2 \left\{\mathsf{Var}\left[X_1\right] + \dots + \mathsf{Var}\left[X_n\right]\right\} \\ &= \left(\frac{1}{n}\right)^2 \sigma^2 + \dots + \left(\frac{1}{n}\right)^2 \sigma^2 \\ &= \left(\frac{1}{n}\right)^2 \left\{\sigma^2 + \dots + \sigma^2\right\} \\ &= \left(\frac{1}{n}\right)^2 \times n\sigma^2 \\ &= \frac{1}{n}\sigma^2. \end{aligned}$$

Normal Distribution and the Central Limit Theorem

- We have shown to date that $ar{X} \sim (\mu, \sigma^2/n)$
- In general, subtracting the mean and dividing by the standard deviation yields a random variable with mean 0 and variance 1.
- So here the standardized variable

$$Z=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim(0,1).$$

• The central limit theorem (a remarkable result) proves normality as the sample size gets large

$$Z \sim {\sf N}(0,1)$$
 as $n
ightarrow \infty.$

- The central limit theorem holds under assumptions A-C
 - and also under some weaker conditions.

Normal Distribution (continued)

• Now convert back to the original \bar{X} .

We have

$$Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim {\sf N}(0,1)$$
 as $n
ightarrow\infty.$

• Then \bar{X} is approximately normally distributed in large samples

$$\bar{X} \sim N(\mu, \sigma^2/n)$$
 approximately for large n .

- We will use this result to do statistical inference on μ .
- However, the variance σ^2/n is unknown as σ^2 is unknown
 - we will have to get an estimate
 - replace σ^2 by its estimate s^2
 - where s is the sample standard deviation of X.

Standard Error of the Sample Mean

• Estimated variance of \bar{X} is

$$s_{\bar{X}}^2 = rac{s^2}{n} = rac{rac{1}{n-1}\sum_i (x_i - \bar{x})^2}{n},$$

• Estimated standard deviation of \bar{X}

$$s_{ar{X}} = rac{s}{\sqrt{n}} = rac{\sqrt{rac{1}{n-1}\sum_i (x_i - ar{x})^2}}{\sqrt{n}}$$

- $s_{\bar{X}}$ is called the standard error of the sample mean \bar{X} .
- The term "standard error" means estimated standard deviation
 - various estimators each have a distinct standard error
 - ▶ a reported "standard error" in computer output need not be $s_{\bar{X}}$.
- Use the notation

$$se(ar{X})=s/\sqrt{n}$$

Summary for the Sample Mean

- Sample values x₁, ..., x_n are observed values of the random variables X₁, ..., X_n.
- ② Individual X_i have common mean μ and variance σ^2 and are independent.
- Average \bar{X} of *n* draws of X_i has mean μ and variance σ^2/n .
- Standardized statistic $Z = (\bar{X} \mu)/(\sigma/\sqrt{n}) \sim (0, 1)$ has mean 0 and variance 1.
- **(3)** Z is standard normal as size $n \to \infty$ by the central limit theorem.
- For large *n* a good approximation is that $\bar{X} \sim N(\mu, \sigma^2/n)$
- The standard error of \bar{X} equals s/\sqrt{n} , where "standard error" is general terminology for "estimated standard deviation".

イロト 不得下 イヨト イヨト 二日

3.5 Sampling from a Population: 1880 Census

- Now consider an example of sampling from a population.
- **Population:** *N* = 50,169,452
 - ▶ all people recorded as living in the U.S. in 1880
 - the average age is 24.13 years, so $\mu = 24.13$
 - \blacktriangleright the standard deviation of age is 18.61, so $\sigma=18.61$
 - histogram is given in the next slide.

Example: 1880 Census (continued)

- Population
 - Probabilities decline with age (clearly not the normal)
 - Peaks due to rounding at five and ten years

Example: 1880 Census (continued)

• Single sample: n = 25

- random sample of size 25 from the entire U.S. population
- the average age is 27.84, so $\overline{\mathbf{x}} = \mathbf{27.84}$
- the standard deviation of age is 20.71, so $\mathbf{s} = \mathbf{20.71}$
- these are similar to, but not exactly equal to, μ and σ
- histogram of x's in a single sample is given in left panel of next slide.

• Many samples of size 25

- randomly draw 100 different samples, each of size 25
- then $\bar{x}_1 = 27.84$, $\bar{x}_2 = 19.40$, $\bar{x}_3 = 23.28$ years,
- average of the 100 sample means is 23.78, close to $\mu = 24.13$.
- standard deviation of the 100 means is 3.76. close to $\sigma/\sqrt{n} = 18.61/\sqrt{25} = 3.72.$
- histogram of $\bar{x}'s$ across 100 samples is given in right panel of next slide.

イロト 不得下 イヨト イヨト 二日

Example: 1880 Census (continued)

- 100 different means from 100 different samples, each of size 25
 - histogram (left) and kernel density estimate (right)
 - looks like normal with mean μ and standard deviation much less than σ

3.6 Estimation of the Sample Mean

- Desire a good **point estimate** of population mean μ
 - why use \bar{x} rather than some other estimate?
- A desirable estimator of μ has distribution
 - centered on μ
 - with as little variability around μ as possible.

Parameter, Estimator and Estimate

- A **parameter** is a constant that determines in part the distribution of *X*.
- An estimator is a method for estimating a parameter.
- An **estimate** is the particular value of the estimator obtained from the sample.
- For estimation of the mean of X using the sample mean
 - the parameter is μ
 - the estimator is the random variable \bar{X}
 - the estimate is the sample value \overline{x} .

Unbiased Estimators

- An unbiased estimator of a population parameter
 - has expected value that equals the population parameter.
- The sample mean is unbiased for μ
 - since $E[\bar{X}] = \mu$.

Minimum Variance Estimators

- ullet Other estimators may also be unbiased and consistent for μ
 - \blacktriangleright e.g. sample median in the case where X is symmetrically distributed
 - discriminate between such estimators using their variance.
- A best estimator or efficient estimator
 - has minimum variance among the class of consistent estimators (or of unbiased estimators).
- Under assumptions A-C the sample mean has variance σ^2/n
 - ▶ for X that is normal, Bernoulli, binomial or Poisson no other unbiased estimator has lower variance
 - ▶ for X with other distributions the sample mean is often close to having the lowest variance
 - generally the sample mean is used to estimate μ .

Consistent Estimators

- Consistency is a more advanced concept that considers behavior as the sample size goes to infinity.
- A consistent estimator of a population parameter
 - is one that is almost certainly arbitrarily close to the population parameter as the sample size gets very large.
- A sufficient condition for consistency is
 - any bias disappears as the sample size gets very large
 - the variance goes to zero as the sample size gets very large
- The sample mean is consistent for μ under assumptions A-C
 - it is unbiased

• the variance
$$\sigma_{\bar{X}}^2 = \sigma^2 / n \to 0$$
 as $n \to \infty$.

3.7 Samples other than Simple Random Samples

- Recall simple random sample means data are independent and from the same distribution.
- Representative Samples
 - Still from same distribution but no longer statistically independent.
 - Then can adapt methods using an alternative formula for $se(\bar{x})$.
- Nonrepresentative samples
 - Now different observations may have different μ
 - e.g. Survey readers of Golf Digest not representative of population.
 - Big problem.
- Weighted mean can still be used if population weights are known
 - π_i = probability that i^{th} observation is included in the sample.
 - sample weights $w_i = 1/\pi_i$
 - weighted mean $\bar{x}_w = \left[\sum_{i=1}^n w_i x_i\right] / \left[\sum_{i=1}^n w_i\right]$.

イロト イポト イヨト イヨト

3.8 Computer Generation of a Random Variable

• A (pseudo) uniform random number generator

- creates values between 0 and 1
- any value between 0 and 1 is equally likely
- successive values appear to be independent of each other.
- To simulate 30 coin tosses
 - draw 30 uniform random numbers
 - result is heads if the uniform random number exceeds 0.5
- For Census example
 - if uniform random number is between 0 and 1/N, where N = 50,169,452, we choose the first person, etcetera
- The sequence depends on the starting value called the seed
 - always set the seed (e.g. equal to 10101).

Example Stata Code to give 400 sample means

- The following advanced Stata code obtains the 400 sample means in the coin toss example of Chapter 3.2
 - ▶ the program generates one sample of size 30 of x equal 1 or 0
 - the simulate command does this 400 times
 - this gives 400 observations on variable xbar.

```
program onesample, rclass
  drop all
  set obs 30
  generate u = runiform()
  generate x = u > 0.5
  summarize x
  return scalar xbar = r(mean)
end
simulate xbar=r(xbar), seed(10101) reps(400): onesample
summarize
                                        イロト 不過 ト イヨト イヨト ニヨー わらつ
```

Some in-class Exercises

- Suppose X = 100 with probability 0.8 and X = 600 with probability 0.2. Find the mean, variance and standard deviation of X.
- Consider random samples of size 25 from the random variable X that has mean 100 and variance 400. Give the mean, variance and standard deviation of the mean X.