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Chapter 4

CHAPTER 4: Statistical Inference

Extrapolate from sample mean x̄ to population mean µ.

Given the sample, con�dence intervals give a range of values that µ is
likely to full into.

Hypothesis tests are used to determine whether or not a speci�ed
value or range of values of µ is plausible, given the sample.

While we focus on µ, the methods generalize to inference on other
parameters.
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4.1 Example: Mean Annual Earnings

4.1 Example: Mean Annual Earnings

Sample of 171 female full-time workers aged 30 in 2010.

Descriptive statistics obtained using Stata summarize command

    earnings         171    41412.69    25527.05       1050     172000

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize earnings

Key statistics:
I Mean: sample mean x̄
I Std. Dev.: standard error s measures the precision of x̄ as an estimate
of µ.

The next slides present methods for statistical inference on µ that are
explained in detail in the remainder of the chapter.
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4.1 Example: Mean Annual Earnings Con�dence Interval for the Mean

95% Con�dence Interval for the Mean
A 95% con�dence interval for a parameter is a range of likely values
that the parameter lies in with 95% con�dence.
95% Con�dence interval for µ obtained using Stata mean command.

    earnings    41412.69   1952.103      37559.21    45266.17

       Mean   Std. Err.     [95% Conf. Interval]

Mean estimation                   Number of obs   =        171

. mean earnings

Key statistics:
I Mean: sample mean x̄ is the estimate of µ
I Std. Err: standard error measures the precision of x̄ as an estimate of µ

F this equals s/
p
n = 25527.05/

p
171 = 1952.1.
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4.1 Example: Mean Annual Earnings Con�dence Interval for the Mean

95% Con�dence Interval Calculation

In general a con�dence interval is

estimate� critical value� standard error

Here we consider the population mean µ.

The estimate is x̄ = 41412.69

The standard error measures the precision of x̄ as an estimate of µ

I se(x̄) = s/
p
n = 25527.05/

p
171 = 1952.1.

The 95% critical value is approximately 2
I more precisely here c = 1.974 as Pr[jT170 j � 1.974] = 0.95.

The 95% con�dence interval is then

x̄ � c � se(x̄) = 41412.69� 1.974� 1952.1 = (37559, 45266).

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.4 Statistical Inference November 2022 6 / 49



4.1 Example: Mean Annual Earnings Con�dence Interval for the Mean

Critical Value for the Con�dence Interval
For µ use the T distribution with n� 1 degrees of freedom

I very similar to standard normal distribution except with fatter tails.

Let Tn�1 denoted a random variable that is T (n� 1) distributed.
The critical value c for a 95% conf. interval is that value for which

I the probability that jTn�1 j � c = 0.95
I equivalently the probability that Tn�1 � c = 0.05/2 = 0.025.

Nonshaded area
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Shaded areas
= 0.025 + 0.025
= 0.05

c = crit value
= 2 approx.

0
.1

.2
.3

.4
T 

de
ns

ity

­3 c ­1 0 1 c 3
critical v alue c = 2 approximately

Critical value for 95% conf. int.

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.4 Statistical Inference November 2022 7 / 49



4.1 Example: Mean Annual Earnings Hypothesis test on the Mean

Hypothesis test on the Mean
Hypothesis test using Stata ttest command

I as illustrative example test whether or not µ = 40, 000.

Pr(T < t) = 0.7649 Pr(|T| > |t|) = 0.4703 Pr(T > t) = 0.2351
Ha: mean < 40000 Ha: mean != 40000 Ha: mean > 40000

Ho: mean = 40000 degrees of freedom =      170
    mean = mean(earnings)                                         t =   0.7237

earnings      171    41412.69    1952.103    25527.05    37559.21    45266.17

Variable      Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

One­sample t test

. ttest earnings = 40000

We test H0 : µ = 40000 against Ha : µ 6= 40000.
The test statistic is t = 0.7237.
The p-value is 0.4703 (as we test against Ha : µ 6= 40000).
Since p > 0.05 we do not reject H0 : µ = 40000 at level 0.05.
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4.1 Example: Mean Annual Earnings Hypothesis test on the Mean

Hypothesis test calculation

In general a t test statistic is

t =
estimate � hypothesized value

standard error
.

Here
t =

x̄ � µ0
se(x̄)

=
41412.69� 40000

1952.1
= 0.7237.

The p-value is the probability of observing a value at least as large as
this in absolute value.

Here p equals the probability that jT170j � 0.7237 = 0.4703.
Since this probability exceeds 0.05 we do not reject H0.
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4.2 t Statistic and t distribution

4.2 t Statistic and t distribution

Estimate µ using x̄ which is the sample value of draw of the random
variable X̄

So far we have E [X̄ ] = µ and Var [X̄ ] = σ2/n for a simple random
sample.

For con�dence intervals and hypothesis tests on µ we need a
distribution

I under certain assumptions X̄ is normally distributed
I but with variance that depends on the unknown σ2

I we replace σ2 by the estimate s2
I this leads to use of the t-statistic and the t distribution

F similar to the standard normal but with fatter tails.
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4.2 t Statistic and t distribution Normal Distribution

Normal Distribution and the Central Limit Theorem

We assume a simple random sample where
I A. Xi has common mean µ : E[Xi ] = µ for all i .
I B. Xi has common variance σ2 : Var[Xi ] = σ2 for all i .
I C. Statistically independence: Xi is statistically independent of
Xj , i 6= j .

Then X̄ � (µ, σ2/n), i.e. X̄ has mean µ and variance σ2/n.
Under these assumptions the standardized variable
Z = X̄�µ

σ/
p
n � (0, 1).

The central limit theorem (a remarkable result) states that if
additionally the sample size is large Z is normally distributed

Z =
X̄ � µ

σ/
p
n
� N(0, 1) as n! ∞.
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4.2 t Statistic and t distribution The t Statistic

The t-statistic
Now replace the unknown σ2 by an estimator
S2 = 1

n�1 ∑n
i=1(Xi � X̄ )2.

T =
X̄ � µ

S/
p
n
.

The distribution for T is complicated. The standard approximation is
T has the t distribution with (n� 1) degrees of freedom

T � T (n� 1)

Comments
I di¤erent degrees of freedom correspond to di¤erent t distributions
I the term degrees of freedom is used because X̄ = 1

n ∑ni=1 Xi implies
that only (n� 1) terms in the sum are free to vary

I T � T (n� 1) exactly in the very special case that Xi s are normally
distributed

I otherwise T is not T (n� 1) exactly but is the standard approximation.
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4.2 t Statistic and t distribution The t Statistic

The t-statistic (continued)

In summary, inference on µ is based on the sample t-statistic is

t =
x̄ � µ

se(x̄)
=
x̄ � µ

s/
p
n
,

I x̄ is the sample mean
I se(x̄) is the standard error of x̄
I s is the sample standard deviation.

The statistic t is viewed as a realization of the T (n� 1) distribution.
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4.2 t Statistic and t distribution The t Distribution

The t Distribution
t distribution has probability density function that is bell-shaped

I Pr[a < T < b] is the area under the curve between a and b

The t distribution has fatter tails than the standard normal.
Tv denotes a random variable that has the T (v) distribution.
Di¤erent values of v correspond to di¤erent T distributions

I t∞ is the same as N(0, 1).
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4.2 t Statistic and t distribution Probabilities for the t Distribution

Probabilities for the t Distribution

Probabilities are the area under the t probability density function.
I e.g. Pr[a < T < b] is the area under the curve from a to b

Computing these probabilities requires a computer.

The Stata function ttail(v,t) gives Pr[Tv > t]
I e.g. Pr[T170 > 0.724] = ttail(170,0.724)= 0.235.

The R function 1-pt(t,v) gives Pr[Tv > t]
I e.g. Pr[T170 > 0.724] = 1-pt(0.724,170)= 0.235.
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4.2 t Statistic and t distribution Inverse Probabilities for the t Distribution

Inverse Probabilities for the t Distribution

For con�dence intervals we need to �nd the inverse probability
I called a critical value.

De�nition: the inverse probability or critical value c = tv ,α is that
value such that the probability that a T (v) distributed random
variable exceeds tv ,α equals α.

Pr[Tv > tv ,α] = α.

I i.e. the area in the right tail beyond tv ,α equals α.

Example: Pr[T170 > 1.654] = 0.05 so c = t170,.05 = 1.654.

The Stata function invttail(v,a) gives a such that Pr[Tv > t] = a
I e.g. c = t170,.05 =invttail(170,.05)= 1.654.

The R function is qt(1-a,v) e.g. qt(0.95,170)= 1.654.
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4.2 t Statistic and t distribution Inverse Probabilities for the t Distribution

Inverse probabilities (continued)

Left panel: Pr[T170 > 1.654] = 0.05, so t170,.05 = 1.654.

Right panel: Pr[�1.974 < T170 < 1.974] = 0.05
I using Pr[T170 > 1.974] = 0.025 and t170,.025 = 1.974.
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4.3 Con�dence Intervals 95% Con�dence Interval

4.3 Con�dence Intervals

For simplicity focus on 95% con�dence intervals.

A 95 percent con�dence interval for the population mean is

x̄ � tn�1,.025 � se(x̄),

I x̄ is the sample mean
I tn�1,.025 is exceeded by a T (n� 1) random variable with probability
0.025

I se(x̄) = s/
p
n is the standard error of the sample mean.

The area in the tails is 0.025+ 0.025 = 0.05
I leaving area 0.95 in the middle
I hence a 95% con�dence interval.
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4.3 Con�dence Intervals Example: Mean Annual Earnings

Example: Mean Annual Earnings

Here x̄ = 41413, se(x̄)=s/
p
n = 1952, n = 171, and

t170,.025 = 1.974.

A 95% con�dence interval (CI) is

x̄ � tn�1,α/2 �
�
s/
p
n
�
= 41413� 1.974� 1952
= 41413� 3853
= (37560, 45266).

A 95% con�dence interval for population mean earnings of thirty
year-old female full-time workers is

I ($37,560, $45,266)
I this was the result obtained earlier using the Stata mean command.
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4.3 Con�dence Intervals Derivation of a 95% Con�dence Interval

Derivation of a 95% Con�dence Intervals
We derive a 95% con�dence interval from �rst principles.
For simplicity consider a sample with n = 61, in which case
n� 1 = 60 and t60,.025 = 2.0003. Thus

Pr[�2.0003 < T60 < 2.0003] = 0.95.

Round to Pr[�2 < T < 2] = 0.95 and substituting T = X̄�µ

S/
p
n yields

Pr
�
�2 < X̄ � µ

S/
p
n
< 2

�
= 0.95.

Convert to an interval that is centered on µ as follows

Pr
h
�2 < X̄�µ

S/
p
n < 2

i
= 0.95

Pr
�
�2S/

p
n < X̄ � µ < 2S/

p
n
�
= 0.95 times S/

p
n

Pr
�
�X̄ � 2S/

p
n < �µ < �X̄ + 2S/

p
n
�
= 0.95 subtract X̄

Pr
�
X̄ + 2S/

p
n > µ > X̄ � 2S/

p
n
�
= 0.95 times � 1.
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4.3 Con�dence Intervals Derivation of a 95% Con�dence Interval

Derivation (continued)

Re-ordering the �nal inequality yields

Pr
�
X̄ � 2� S/

p
n < µ < X̄ + 2S/

p
n
�
= 0.95.

Replace random variables by their observed values
I the interval (x̄ � 2� s/

p
n, x̄ + 2� s/

p
n) is called a 95% con�dence

interval for µ.

More generally with sample size n the critical value is tn�1,.025.

A 95% con�dence interval is (x̄ � tn�1,.025 � se(x̄),
x̄ + tn�1,.025 � se(x̄)).
This is the con�dence interval formula given earlier.
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4.3 Con�dence Intervals What Level of Con�dence?

What Level of Con�dence?

Ideally narrow con�dence intervals with high level of con�dence.

But trade-o¤: more con�dence implies wider interval
I e.g. 100% con�dence is µ in (�∞,∞).

What value of con�dence should we use?
I no best value in general
I common to use a 95% con�dence interval.

A 100(1� α)% percent con�dence interval for the population
mean is

x̄ � tn�1,a/2 �
�
s/
p
n
�
.

I α = 0.05 (so α/2 = 0.025) gives a 95% con�dence interval as
100� (1� 0.05) = 95.

I next most common are 90% (α = 0.10) and 99% (α = 0.01)
con�dence intervals
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4.3 Con�dence Intervals What Level of Con�dence?

Critical t values

Table presents tv ,α/2 for various con�dence levels (α) and v = n� 1.
The 95% con�dence intervals critical values are bolded

Con�dence Level 100(1� α) 90% 95% 99%
Area in both tails α 0.10 0.05 0.01
Area in single tail α/2 0.05 0.025 0.005
t value for v = 10 t10,α/2 1.812 2.228 3.169
t value for v = 30 t30,α/2 1.697 2.042 2.750
t value for v = 100 t100,α/2 1.660 1.980 2.626
t value for v = ∞ t∞,α/2 1.645 1.960 2.576
standard normal value zα/2 1.645 1.960 2.576

Note that tv ,.025 ' 2 for v > 30.
An approximate 95% con�dence interval for µ is therefore a
two-standard error interval

I the sample mean plus or minus two standard errors.
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4.3 Con�dence Intervals Interpretation

Interpretation

Interpretation of con�dence intervals is conceptually di¢ cult.

The correct interpretation of a 95 percent con�dence interval is that
if constructed for each of an in�nite number of samples then it will
include µ 95% of the time

I of course we only have one sample.

1880 Census example (we know µ = 24.13) in Chapter 3
I First sample of size 25: 95% con�dence interval (17.99, 34.81)
I Second sample: 95% CI (13.12, 25.54), and so on.

For the particular 100 samples drawn
I two samples had 95% con�dence intervals that did not include µ

F 20th sample had 95% interval (8.57, 23.90)
F 50th sample had 95% interval (11.49, 21.45)

I so here 98% of the samples had 95% con�dence interval that included
µ (versus theory 95%).
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4.4 Two-Sided Hypothesis Tests Null and Alternative Hypotheses

4.4 Two-Sided Hypothesis Tests

A two-sided test or two-tailed test for the population mean is a
test of the null hypothesis

H0 : µ = µ�

where µ� is a speci�ed value for µ, against the alternative
hypothesis

Ha : µ 6= µ�.

In the next example µ� = 40000.

Called two-sided as the alternative hypothesis includes both µ > µ�

and µ < µ�.

We need to either reject H0 or not reject H0.
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4.4 Two-Sided Hypothesis Tests Signi�cance Level of a Test

Signi�cance Level of a Test

A test either rejects or does not reject the null hypothesis.

The decision made may be in error.

A type I error occurs if H0 is rejected when H0 is true.
I e.g. H0 is person is innocent. A type I error is to reject H0 and �nd the
person guilty, when in fact the person was innocent.

The signi�cance level of a test, denoted α, is the pre-speci�ed
maximum probability of a type I error that will be tolerated.

Often α = 0.05. A 5% chance of making a type I error.

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.4 Statistical Inference November 2022 26 / 49



4.4 Two-Sided Hypothesis Tests The t-Test Statistic

The t-test Statistic

Obviously reject H0 : µ = µ� if x̄ is a long way from µ�.

Transform to t = (x̄ � µ�)/se(x̄) as this has known distribution.
Equivalently reject H0 : if the t statistic is large in absolute value
where

t =
x̄ � µ�

se(x̄)
=
x̄ � µ�

s/
p
n
.

Example: Test whether or not population mean female earnings equal
$40, 000.
Here H0 : µ = 40000 and n = 171, x̄ = 41412, s = 25527, so
se(x̄) = s/

p
n = 1952

t =
x̄ � µ

se(x̄)
=
41412� 40000

1952
= 0.724.

The t-statistic is a draw from the T (170) distribution, since n = 171.
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4.4 Two-Sided Hypothesis Tests Rejection Using p-values

Rejection Using p-values

How likely are we to obtain a draw from T (170) that is � j0.724j?
The p-value is the probability of observing a t-test statistic at least
as large in absolute value as that obtained in the current sample.

For a two-sided test of H0 : µ = µ� against Ha : µ 6= µ� the p-value is

p = Pr[jTn�1j � jtj].

H0 is rejected at signi�cance level α if p < α, and is not rejected
otherwise.

Earnings example
I p = Pr[jT170 j � 0.724] = 0.470.
I since p > 0.05 we do not reject H0.
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4.4 Two-Sided Hypothesis Tests Rejection Using p-values

Left panel: p-value

Right panel: critical value
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4.4 Two-Sided Hypothesis Tests Rejection using Critical Regions

Rejection using Critical Regions
Alternative equivalent method is the following

I base rejection directly on the value of the t-statistic
I requires table of critical values rather than computer for p-values.

A critical region or rejection region is the range of values of t that
would lead to rejection of H0 at the speci�ed signi�cance level α.
For a two-sided test of H0 : µ = µ� against Ha : µ 6= µ�, and for
speci�ed α, the critical value c is such that

c = tn�1,α/2 (so equivalently Pr[jTn�1j � c ] = α).

H0 is rejected at signi�cance level α if jtj > c , and is not rejected
otherwise.
Earnings example:

I if α = 0.05 then c = t170,0.025 = 1.974.
I do not reject H0 since t = 0.724 and j0.724j < 1.974.

The critical value is illustrated in right panel of the preceding �gure.
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4.4 Two-Sided Hypothesis Tests Which Signi�cance Level?

Which Signi�cance level?

Decreasing the signi�cance level α

I decreases the area in the tails that de�nes the rejection region
I makes it less likely that H0 is rejected.

It is most common to use α = 0.05, called a test at the 5%
signi�cance level

I then a type I error is made 1 in 20 times.

This is a convention and in many applications other values of α may
be warranted.

I e.g. What if H0 : no nuclear war? Then use α > 0.05.

Reporting p-values allows the reader to easily test using their own
preferred value of α.

Further discussion under test power.
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4.4 Two-Sided Hypothesis Tests Relationship to Con�dence Intervals

Relationship to Con�dence Intervals

Two-sided tests can be implemented using con�dence intervals.

If the H0 value µ� falls inside the 100(1� α) percent con�dence
interval then do not reject H0 at level α.

Otherwise reject H0 at signi�cance level α.
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4.4 Two-Sided Hypothesis Tests Summary

Summary

A summary of the preceding example is the following.

Hypotheses H0 : µ = 40000 Ha : µ 6= 40000 α = 0.05
Signi�cance level α = 0.05
Sample data x̄ = 41412, s = 25527, n = 171
Test statistic t = (41412� 40000)/(25527/

p
171) = 0.724

(1) p-value p = Pr[jT170j � j0.724j] = 0.470
approach Do not reject H0 at level .05 as p > .05

(2) Critical value c = t170,.025 = 1.974
approach Do not reject H0 at level .05 as jtj < c .

The p-value and critical value approaches are alternative methods
that lead to the same conclusion.
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4.5 Hypothesis Testing Examples

4.5 Hypothesis Testing Example 1: Gasoline Prices

Test at α = .05 claim that the price of regular gasoline in Yolo
County is neither higher nor lower than the norm for California.

I one day�s data from a website that provides daily data on gas prices
I average California price that day was $3.81
I H0 : µ = 3.81 is tested against Ha : µ 6= 3.81.

n = 32, x̄ = 3.6697 and s = 0.1510.

t = (3.6697� 3.81)/(0.1510/
p
32) = �5.256.

p value method: p = Pr[jT31j > 5.256] = 0.000
I reject H0 at level .05 since p < .05.

Critical value method: c = t31,.025 = 2.040.
I reject H0 at level .05 since jtj = 5.256 > c = 2.040.

Reject the claim that reject the claim that population mean Yolo
County gas price equals the California state-average price.
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4.5 Hypothesis Testing Examples

Example 2: Male Earnings

Test at α = .05 the claim that population mean annual earnings for
30 year-old U.S. men with earnings in 2010 exceed $50,000

I claim that > 50000 is set up as the alternative hypothesis
I H0 : µ � 50000 is tested against Ha : µ > 50000.

n = 191, x̄ = 52353.93 and s = 65034.74.

t = (52353.93� 50000)/(65034.74/
p
191) = 0.5002.

p value method: p = Pr[T190 > 0.500] = 0.310.
I do not reject H0 at level .05 since p > .05.

Critical value method: c = t190,.05 = 1.653.
I do not reject H0 at level .05 since t = 0.500 > c = 1.653.

Do not reject the claim that population mean earnings exceed
$50,000.
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4.5 Hypothesis Testing Examples

Example 3: Price In�ation

Test at α = .05 claim that U.S. real GDP per capita grew on average
at 2.0% over the period 1960 to 2020

I use year-to-year percentage changes in U.S. real GDP per capita.
I H0 : µ = 2.0 tested against Ha : µ 6= 2.0.

n = 241, x̄ = 1.9904 and s = 2.1781.

t = (1.9904� 2.0)/(2.1781/
p
241) = �0.068.

p value method: p = Pr[jT258j > 0.0680] = 0.946
I do not reject H0 at level .05 since p < .05.

Critical value method: c = t241,.025 = 1.970
I do not reject H0 at level .05 since jtj = 0.068 < c = 1.970.

Do not reject the claim that population mean growth was 2.0%.
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4.6 One-Sided Directional Hypothesis Tests One-Sided Hypotheses

4.6 One-sided Directional Hypothesis Tests

An upper one-tailed alternative test is a test of H0 : µ � µ�

against Ha : µ > µ�.

A lower one-tailed alternative test is a test of H0 : µ � µ� against
Ha : µ < µ�.

For one-sided tests the statement being tested is speci�ed to be the
alternative hypothesis.

And if a new theory is put forward to supplant an old, the new theory
is speci�ed to be the alternative hypothesis.

Example: Test claim that population mean earnings exceed $40,000
I test H0 : µ � 40000 against Ha : µ > 40000.
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4.6 One-Sided Directional Hypothesis Tests P-Values and Critical Regions

P-Values and Critical Regions

Use the usual t-test statistic t = (x̄ � µ�)/se(x̄).
For an upper one-tailed alternative test

I p = Pr[Tn�1 � t] is p-value
I c = tn�1,α is critical value at signi�cance level α
I reject H0 if p < α or, equivalently, if t > c .

For a lower one-tailed alternative test
I p = Pr[Tn�1 � t] is p-value
I c = �tn�1,α is critical value at signi�cance level α
I H0 if p < α or, equivalently, if t < c .
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4.6 One-Sided Directional Hypothesis Tests Example: Mean Annual Earnings

Example: Mean Annual Earnings

Evaluate the claim that the population mean exceeds $40,000.

Test of H0 : µ � 40000 against Ha : µ > 40000
I the claim is speci�ed to be the alternative hypothesis
I a detailed explanation is given next
I and we reject if t is large and positive.

From earlier t = 0.724 .

p value method: p = Pr[T170 � .724] = 0.235
I do not reject H0 at level 0.05 since p > 0.05.

Critical value method: c = t170,.05 = 1.654
I do not reject H0 at level 0.05 since t = 0.724 < c = 1.654.
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4.6 One-Sided Directional Hypothesis Tests Example: Mean Annual Earnings

Left panel: p-value

Right panel: critical value
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4.6 One-Sided Directional Hypothesis Tests Specifying the Null Hypothesis in One-Sided Test

Specifying the Null Hypothesis in One-sided Test

Suppose claim is that population mean earnings exceed $40,000.

Potential method 1: test H0 : µ � 40000 against Ha : µ > 40000
I Reject H0 if x̄ quite a bit higher than 40000. e.g. 43,000.
I Then claim that µ > 40000 is supported if x̄ > 43000.

Potential method 2: test H0 : µ � 40000 against Ha : µ < 40000
I Reject H0 if x̄ quite a bit smaller than than 40000. e.g. 37,000.
I So do not reject H0 if x̄ > 37000.
I Then claim that µ > 40000 is supported if x̄ > 37000
I Much more likely to accept the claim than with method 1.

The statistics philosophy: need strong evidence to support a claim
I the �rst speci�cation is therefore used
I the statement being tested is speci�ed to be the alternative
hypothesis.
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4.7 Generalization of Con�dence Intervals and Hypothesis Tests

4.7 Generalize Con�dence Intervals and Hypothesis Tests

Consider general case of an estimate of a parameter
I with standard error the estimated standard deviation of the estimate
I generalizes x̄ is an estimate of µ with standard error se(x̄).

For the models and assumptions considered in this book

t =
estimate� parameter

standard error
� T (v) distribution

where the degrees of freedom v vary with the setting.
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4.7 Generalization of Con�dence Intervals and Hypothesis Tests Generalizations of Con�dence Intervals

The 100(1� α)% con�dence interval for the unknown parameter is

estimate� tv ,α/2 � standard error.

Most often use 95% con�dence level and tv ,.025 ' 2 for v > 30.
So an approximate 95% CI is a two-standard error interval

estimate� 2� standard error.

Margin of error in general is half the width of a con�dence interval.
I For 95% con�dence intervals, since tv ,.025 ' 2,

Margin of error ' 2� Standard error.
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4.7 Generalization of Con�dence Intervals and Hypothesis Tests Generalizations of Hypothesis Tests

Generalization of Hypothesis Tests

Two-sided test at signi�cance level α of
I H0 : a parameter equals a hypothesized value against
I Ha : that it does not.

Calculate the t-statistic

t =
estimate� hypothesized parameter value

standard error
.

I under H0 t is the sample realization of a T (v) random variable.

Two-sided hypothesis test at signi�cance level α:
I p-value approach: reject H0 if p < α where p = Pr[jTv j > t]
I critical value approach: reject H0 if jtj > c where c = tv ,α/2 satis�es
Pr[Tv > tv ,α/2 ] = α

I the two methods lead to the same conclusion.
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4.8 Proportions Data

4.8 Proportions Data

Consider proportion of respondents voting Democrat.

Code data as xi = 1 if vote Democrat and xi = 0 if vote Republican
I the sample mean x̄ is the proportion voting Democrat.
I the sample variance s2 = nx̄(1� x̄)/(n� 1)

F in this special case of binary data.

Example: 480 of 921 voters intend to vote Democrat
(and 441 vote Republican)

I x̄ = (480� 1+ 440� 0)/921 = 0.5212
I s2 = 921� 0.5212� (1� 0.5212)/920 = 0.2498.
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Inference for Proportions Data

Inference for Proportions Data

View each outcome as result of random variable

X =
�
1 with probability p if vote Democrat
0 with probability 1� p if vote Republican

Then X̄ has mean p and variance σ2/n = p(1� p)/n.
Can do analysis using earlier results with the usual standard error of x̄

I here s2/n = nx̄(1� x̄)/(n� 1) = x̄(1� x̄)/(n� 1)
But usually con�dence intervals substitute x̄ for p in
σ2/n = p(1� p)/n

I so standard error of x̄ is x̄(1� x̄)/n
And hypothesis tests of H0 : p = p� also substitute for p and use

t =
x̄ � p�p

p�(1� p�)/n
.
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Key Stata Commands

Key Stata Commands

use EARNINGSBOTH.DTA, clear
* Confidence interval
mean earnings
mean earnings, level(90)
* Hypothesis test
ttest earnings = 40
* Upper tail probability
display ttail(170,0.724)
* Critical value or inverse tail probability
display invttail(170,0.025)
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Key Stata Commands

Computing the p-value and Critical Value

Example of computer commands to get p and c
I for t = t, degrees of freedom v , and test at level α

Two-sided tests
I Stata: p = 2�ttail(v , jtj) and c = invttail(v , α/2)
I R: p = 2 � (1�pt(jtj, v)) and c = qt(1� α/2, v)
I Excel: p =TDIST(jtj, v , 2) and c =TINV(2α, v)

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.4 Statistical Inference November 2022 48 / 49



Some in-class Exercises

Some in-class Exercises

1 Suppose observations in a sample of size 25 have mean 200 and
standard deviation of 100. Give the standard error of the sample
mean.

2 Suppose n = 100, x̄ = 500 and s = 400. Provide an approximate
95% con�dence interval for the population mean.

3 Suppose observations in a sample of size 100 have mean 300 and
standard deviation of 90. Test the claim that the population mean
equals 280 at the 5% signi�cance level.
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