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Chapter 5

CHAPTER 5: Bivariate Data Summary

Summarize the relationship between two variables:
I e.g. earnings and education
I e.g. house price and house size
I notation is that variable y is a function of variable x .

How do we measure the association?
I correlation coe¢ cient �1 � r � 1.

How do we summarize the relationship?
I linear regression by = b1 + b2x .

How do we summarize the strength of this relationship?
I R-squared 0 � R2 � 1.
I standard error of the regression se .

This chapter provides details on these measures.
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5.1 Example: House Price and Size

5.1 Example: House Price and Size

House price and size for sample of 29 houses
I control for location by consider homogeneous housing market
I central Davis in 1999.
I eyeballing data it seems higher price if larger size

Sale Price Sq. Feet Sale Price Sq. Feet Sale Price Sq. Feet
375,000 3,300 255,000 1,500 235,000 1,700
340,000 2,400 253,000 2,100 233,000 1,700
310,000 2,300 249,000 1,900 230,000 2,100
279,900 2,000 245,000 1,400 229,000 1,700
278,500 2,600 244,000 2,000 224,500 2,100
273,000 1,900 241,000 1,600 220,000 1,600
272,000 1,800 239,500 1,600 213,000 1,800
270,000 2,000 238,000 1,900 212,000 1,600
270,000 1,800 236,500 1,600 204,000 1,400
258,500 1,600 235,000 1,600
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5.1 Example: House Price and Size

Summary Statistics

House sale price ranges from $204,000 to $375,000
I mean $253,910 and standard deviation $37,391.

House size ranges from 1,400 to 3,300 square feet
I mean 1,883 square feet and standard deviation 398 square feet.

Statistic Sale Price Square Feet
Mean 253,910 1,883
Standard deviation 37,391 398
Standard error 6,943 74
Maximum 375,000 3,300
Median (50th percentile) 244,000 1,800
Minimum 204,000 1,400
Skewness 1.56 1.73
Kurtosis 5.61 6.74
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5.1 Example: House Price and Size

Key methods for measuring relationship (this chapter)
The correlation between house price against house size is 0.786.
A scatterplot of house price against house size yields
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Regression of house price against house size yields

[Price = 115, 017+ 73.77� Size. R2 = 0.6175

An extra square foot of house is associated with a $73.77 increase in
house price.
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5.2 Two-way Tabulation

5.2 Two-way Tabulation

A two-way tabulation or cross tabulation of variables x and y lists
the number (or fraction) of observations equal to each of the distinct
values taken by the pair (x , y).

Useful if the variables x and y take relatively few values
I categorical data with few categories
I discrete numerical taking a few values
I for continuous numerical convert to a few ranges.

House price and size data create
I pricerange: low (price<$249,000) or high (price�$250,000).
I sizerange: small (size<1,800), medium (1,800�size<2,400) or large
(size�2,400).
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5.2 Two-way Tabulation

Two-way Tabulation (continued)

Main entry: # observations with a given price-size combination
I e.g. there were 11 houses of low price and small size.

Size range
Price range Small Medium Large Total

Low 11 6 0 17
High 2 7 3 12
Total 13 13 3 29

Table also includes row sums and column sums
I e.g. total in row for low price range is 11+ 6+ 0 = 17 observations.

Table includes a second optional entry, a row percentage
I for each value of pricerange gives % of obs in each of the size ranges
I e.g. low-priced: small = 11 out of 17 = 100� 11/17 = 64.71%.

Can also include similarly constructed column percentages.
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5.2 Two-way Tabulation

Two-way Tabulation (continued)
A two-way tabulation can also include expected frequencies,
assuming that the two variables are statistically independent.

I Expected frequency = (row total x column total) / # obs.
I e.g. low-price small-size cell expect 17� 13/29 = 7.62.

Size range
Price range Small Medium Large Total

Low 11 6 0 17
7.62 7.62 1.76 17.00

High 2 7 3 12
5.38 5.38 1.24 12.00

Total 13 13 3 29
44.83 44.83 10.34 29.00

Table presents both observed and expected frequencies.
I e.g. More low-price houses are small then would be expected if price
and size were independent (11 versus 7.62)

I Di¤erence is basis for Pearson�s chi-squared goodness-of-�t test of
statistical independence of two categorical variables.
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5.3 Two-way Scatterplot

5.3 Two-way Scatterplot
Standard visual method is a two-way scatter plot

I �rst panel shows house price increases with house size.
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5.4 Correlation Sample Correlation

5.4 Sample Correlation

Correlation coe¢ cient is a standard way to measure association
between x and y

The sample correlation coe¢ cient is a unit-free measure ranging
from �1 to 1 with

rxy = 1 perfect positive correlation
0 < rxy < 1 positive correlation
rxy = 0 no correlation

�1 < rxy < 0 negative correlation
rxy = �1 prefect negative correlation

For the house price and size data: rxy = 0.786.
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5.4 Correlation Sample Covariance

Sample Covariance
Recall sample variance s2x =

1
n�1 ∑n

i=1(xi � x̄)2.
The sample covariance between x and y is similarly de�ned:

sxy =
1

n� 1 ∑n
i=1(xi � x̄)(yi � ȳ).

Suppose on average y increases as x increases.
I then (xi � x̄)(yi � ȳ) > 0 most of the time

F since (yi � ȳ ) > 0 usually if (xi � x̄) > 0, so (+)� (+) = (+)
F and (yi � ȳ ) < 0 usually if (xi � x̄) < 0, so (�)� (�) = (+)

I It follows that sxy > 0.

Example is the second panel on the earlier slide
I Most observations are in the quadrants where (xi � x̄)(yi � ȳ) > 0
I so positively correlated (in fact sxy = 11,701,613.3 !).

Similarly sxy < 0 if y decreases as x increases.
Thus the sign of the covariance is easily interpreted

I sxy > 0 if positive association
I sxy < 0 if negative association.
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5.4 Correlation Sample Correlation

Sample Correlation

The sample correlation coe¢ cient is de�ned by

rxy =
Covariance of x and y

(Standard deviation of x)� (Standard deviation of y)
=

sxy
sx sy

=
∑n
i=1(xi � x̄)(yi � ȳ)p

∑n
i=1(xi � x̄)2 �∑n

i=1(yi � ȳ)2
.

The correlation coe¢ cient is the covariance between the standardized
versions of x and y

I rxy equals the covariance of (x � x̄)/sx and (y � ȳ)/sy .
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5.4 Correlation Sample Correlation

Four Examples of Strength of Correlation
(1) strong positive correlation; (2) moderate positive correlation; (3)
almost zero correlation, and (4) moderate negative correlation.
Though no clear cuto¤s for �weak�, �moderate�, �strong�correlation.
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5.4 Correlation Autocorrelations for Time Series Data

Autocorrelations for Time Series Data

For time series data the autocorrelation at lag j is the correlation
between current data and the data lagged j periods.

I e.g. correlation between yt and yt�j .
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5.5 Regression Line Regression Line

5.5 Regression Line

This is the key method in the analysis of economics data.

The regression line from regression of y on x is denoted

by = b1 + b2x ,
where

I y is called the dependent variable
I by is the predicted value or �tted value of the dependent variable
I x is the independent variable or explanatory variable or regressor
variable or covariate

I b1 is the estimated y -axis intercept
I b2 is the estimated slope coe¢ cient.

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.5: Bivariate Data Summary November 2022 16 / 47



5.5 Regression Line The Residual

The Residual
Residual e is the di¤erence between actual value of y and predicted
value by

e = y � by .
I also denoted bu = y � by .
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5.5 Regression Line Least Squares Regression

Least Squares Regression

For �rst observation the residual is e1 = y1 � by1, for second
observation the residual is e2 = y2 � by2, and so on.
For i th observation

ei = yi � byi
= yi � b1 � b2xi .

Least squares method chooses intercept b1 and slope b2 of the line
to make as small as possible the sum of the squared residuals,
e21 + e

2
2 + � � �+ e2n .

Thus b1 and b2 minimize

∑n
i=1 e

2
i = ∑n

i=1(yi � byi )2
= ∑n

i=1(yi � b1 � b2xi )
2.
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5.5 Regression Line Least Squares Regression

This is a calculus problem
I Di¤erentiate with respect to b1 and b2
I Set the two derivatives equal to zero
I Solve two equations in two unknowns for b1 and b2
I Algebra is skipped.

The resulting formula for the least squares slope coe¢ cient is

b2 =
∑n
i=1(xi � x̄)(yi � ȳ)

∑n
i=1(xi � x̄)2

.

The least squares intercept is

b1 = ȳ � b2x̄ .

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.5: Bivariate Data Summary November 2022 19 / 47



5.5 Regression Line Interpretation of the Slope Coe¢ cient

Interpretation of the Slope Coe¢ cient

The slope coe¢ cient b2 gives the slope:

∆by
∆x

= b2.

Reason: If regressors changes by ∆x from x to (x + ∆x)
then the �tted value by changes from b1 + b2x to
b1 + b2(x + ∆x) = b1 + b2x + b2x∆x , a change of b2∆x .

I It follows that ∆by = b2∆x .

The slope coe¢ cient b2 is therefore easily interpreted as the change
in the predicted value of y when x increases by one unit.

The same result can be obtained using calculus methods
I since by = b1 + b2x has derivative dby/dx = b2.
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5.5 Regression Line Example: House Price

Example: House Price

Fitted regression

[Price = 115, 017+ 73.77� Size.

The slope coe¢ cient equals 73.77
I one more square foot in size is associated with a $73.77 increase in the
house price

I equivalently an additional small room of size ten feet by ten feet, or
100 square feet, is associated with a 100� $73.77 = $7, 377 increase
in house price.
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5.5 Regression Line Example: House Price

Scatterplot and least squares regression line.
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5.5 Regression Line Intercept-only Regression yields Sample Mean

Intercept-only Regression yields Sample Mean

OLS regression of y on just an intercept
I minimize ∑ni=1(yi � b1)2 yields b1 = ȳ .

So regression of y on only an intercept yields the sample mean ȳ

OLS regression is a natural extension of univariate statistics based on
the sample mean

And univariate statistics based on the sample mean is just a special
case of OLS regression.
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5.6 Measures of Model Fit

5.6 Measures of Model Fit

Two standard measures.

The standard error of the regression measures the standard deviation
of the residuals.

R-squared (R2) measures the fraction of the variation of y (around
the sample mean ȳ) that is explained by the regressors.

Provided the regression includes an intercept
I 0 � R2 � 1
I R2 = 0 ) no relationship between y and x as byi = ȳ for all i .
I R2 = 1 ) regression line perfectly �ts y as byi = yi for all i .
I R2 = r2xy ) R2 equals the squared correlation coe¢ cient
I R2 = the squared correlation between y and x (i.e. R2 = r2xy )
I R2 = the squared correlation between y and �tted values by .
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5.6 Measures of Model Fit Standard Error of the Regression

Standard Error of the Regression

The standard error of the regression is

s2e =
1

n� 2 ∑n
i=1(yi � byi )2.

I also called the root mean squared error of the residual.

This measures the closeness of the �tted values byi to the actual
values yi

I it is essentially the average of the squared residuals

F except that division is by n� 2 rather than n.

Lower values of se means �tted values are closer to actual values
I but se is not scale free.
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5.6 Measures of Model Fit De�nition of R-Squared

De�nition of R-squared

R2 measures the fraction of the variation of y (around the sample
mean ȳ) that is explained by the regressors.

Total sum of squares: measures variability in y around the sample
mean ȳ

Total SS = ∑n
i=1(yi � ȳ)

2.

Explained sum of squares measures variability in �tted value by
around ȳ

Explained SS = ∑n
i=1(byi � ȳ)2

I also called regression sum of squares or model sum of squares.

R-squared equals explained sum of squares as a fraction of the total
sum of squares

R2 =
Explained SS
Total SS

=
∑n
i=1(byi � ȳ)2

∑n
i=1(yi � ȳ)2

.
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5.6 Measures of Model Fit De�nition of R-Squared

Example of R-squared

Left panel is Total SS: the deviations (yi � ȳ) for �ve data points.
Right panel is Explained SS: the deviations (byi � ȳ) for �ve data points.
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5.6 Measures of Model Fit De�nition of R-Squared

Computation of R-Squared

For data in previous �gure

Total SS ' (�1.3)2 + (�1.3)2 + (�1.5)2 + 1.42 + 2.72 = 14.88
Explained SS ' (�2.1)2 + (�1.1)2 + (0.0)2 + 1.02 + 2.22 = 11.46

R2 ' 11.46/14.88 = 0.77.

R2 = 0.77 means 77 percent of the variation in y is explained by
regression on x .
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5.6 Measures of Model Fit Alternative Computation of R-Squared

Alternative Computation of R-Squared

Residual sum of squares measures variability in �tted value by
around y

Residual SS = ∑n
i=1(yi � byi )2,

For regression including an intercept it can be shown that

Total SS = Explained SS + Residual SS

As a result, R2 can be equivalently de�ned as

R2 = 1� Residual SS
Total SS

= 1� ∑n
i=1(yi � byi )2

∑n
i=1(yi � ȳ)2

.

I So least squares maximizes R2 as it minimizes Residual SS.
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5.6 Measures of Model Fit R-Squared and the Correlation Coe¢ cient

R-Squared and the Correlation Coe¢ cient

For regression of y on x that includes an intercept we have the
following two results.

R2 equals the squared correlation coe¢ cient between y and x

R2 = r2yx

R2 equals the squared correlation coe¢ cient between y and the �tted
value by

R2 = r2yby
The second result extends to regression with additional regressors.
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5.6 Measures of Model Fit Interpretation of R-Squared

Interpretation of R-Squared

Clearly R2 ' 0 is poor �t and R2 ' 1 is an excellent �t
I but no rule for where R2 becomes large enough that the �t moves from
poor to good.

The value of R2 varies with the level of aggregation of data
I R2 is low for individual-level regression of earnings on education
I R2 is higher using aggregated data, such as state-level regression of
state-average earnings on state-average schooling.

The value of R2 also depends on the choice of dependent variable
I Transform y to a more symmetric distribution may increase R2
I Regression of levels yt has higher R2 than regression of changes ∆yt .

For bivariate regression
I use R2 to compare models with the same dependent variable y
I but not to compare models with di¤erent dependent variable.

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.5: Bivariate Data Summary November 2022 31 / 47



5.6 Measures of Model Fit Interpretation of R-Squared

Low R-Squared

Low values of R2 do not mean that regression analysis is without
merit.

Example: Regression of earnings on education
I usually indicates a substantial e¤ect of education

F e.g. one more year of education is associated with a 6% increase in
annual earnings

I yet R2 in regressions using individual-level data is very low e.g. R2 = 0.

Explanation
I On average there is a large e¤ect of schooling on earnings.
I At the individual level, however, there is considerable variability in
earnings even for people with the same level of education.

I On average, society�s earnings may increase with more education, but
there is great uncertainty as to whether any one given individual will
necessarily see increased earnings.
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5.6 Measures of Model Fit Example: House Price

Example: R-squared for House Price

Regression output will automatically include R2, and often R̄2.

Here compute from formulas, using sums of squares that are given in
�analysis of variance� table often included with regression output.

Explained SS = 24, 170, 725, 242

Residual SS = 14, 975, 101, 655

Total SS = 39, 145, 826, 897

R2 ' 24, 170, 725, 242
39, 145, 826, 897

= 0.6175

or R2 ' 1� 14, 975, 101, 655
39, 145, 826, 897

= 0.6175.

Thus 61.75 percent of the variation in house price is associated with
variation in house size

I this is viewed as a good �t, though still with room for improvement

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.5: Bivariate Data Summary November 2022 33 / 47



5.7 Computer Output following OLS Regression

5.7 Computer Output following OLS Regression

ANOVA Table
Source SS df MS F p
Explained 2.4171�1010 1 2.4171�1010 43.58 0.000
Residual 1.4975�1010 27 5.546�108
Total 3.9146�1010 28 1.3981�109

Dependent Variable Price
Regressor Coe¤. St. Error t stat p 95% C.I.
Size 73.77 11.17 6.60 0.000 50.84 96.70
Intercept 115017 21489 5.35 0.000 70925 159110

Summary Statistics
Observations 29
F(1,27) 43.58
p-value for F 0.0000
R-squared 0.618
Adjusted R2 0.603
St. error of reg 23551
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5.8 Prediction and Outlying Observations Prediction

5.8 Prediction
For x = x� the prediction of y is

by = b1 + b2x�.
Example: House of size 2000 square feet predicted price is $263,000

I by = 115000+ 74� 2000 = 263000.
In-sample prediction uses the sample xi

I then byi is called the �tted value.
Out-of-sample prediction

I predictions can be poor if extrapolate to values x� outside the sample
range of x .

Distinguish between two di¤erent uses of a prediction
I prediction of an average outcome

F e.g. average price for a house of 2000 square feet

I prediction of an individual outcome
F e.g. price for a particular house of 2000 square feet
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5.8 Prediction and Outlying Observations Outlying Observations

Outlying Observations

An outlier or outlying observation is one that is a relatively large
distance from the bulk of the data.

A scatter plot is a useful visual tool.

An observation with a large value for (xi � x̄)(yi � ȳ) can have a big
in�uence on b2. This is the case for observations that are a long way
from both x̄ and ȳ .

An outlier may be due to miscoded data.
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5.9 Regression and Correlation

5.9 Regression and Correlation

Note: ∑n
i=1(xi � x̄)(yi � ȳ) appears in de�nitions of both b2 and rxy .

In fact the slope coe¢ cient

b2 = rxy �
sy
sx
.

Reason: rxy � sy/sx = [sxy/sx sy ]� sy/sx = sxy/s2x = b2.
So rxy > 0) b2 > 0 and rxy < 0) b2 < 0.

Also b2 from regress (yi � ȳ)/sy on (xi � x̄)/sx equals rxy .
I so rxy measures the number of standard deviations that y changes by
as x changes by one standard deviation.

I e.g. rxy = 0.5, sx = 2 and sy = 10. Then a one standard deviation
change in x is associated with a 0.5 standard deviations change in y .
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5.10 Causation Causation

5.10 Causation

The correlation coe¢ cient always treats x and y neutrally.

Regression does not:
I slope b2 from regress y on x
6= inverse of slope c2 from reverse regress x on y

F explained below

I the data alone cannot tell us which direction, if any, is appropriate.

If we estimate y = b1 + b2x , without further information
I can say that a one unit increase in x is associated with a b2 increase
in y

I cannot say that a one unit increase in x causes a b2 increase in y .
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5.10 Causation Causation

Causation (continued)

For example: a medical study might �nd that alcohol consumption is
associated with depression.

I but is it alcohol consumption that causes depression
I or is it depression that leads to alcohol consumption?

Many examples exist where the direction of causation is questionable.

Often it is due to a third variable that may be driving both y and x .

For example: higher education is positively associated with higher
earnings

I but this may be due solely to unobserved innate ability
that leads to both higher earnings due to higher productivity
and to higher education due to ability to study more advanced material.

Chapter 17 focuses on causality.
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5.10 Causation Causation

Reverse Regression

Regression of y on x : by = b1 + b2x
Reverse regression (of x on y): bx = c1 + c2y .
Then c1 6= 1/b1!

I In fact c2 = b2 � (s2x /s2y ).

For the house data
I regression of house price on house size: b2 = 73.77
I reverse regression of house size on house price: c2 = 0.0084

F whereas 1/b2 = 1/73.77 = 0.0136 6= 0.0084.
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5.11 Computations for Correlation and Regression

5.11 Computations for Correlation and Regression

Arti�cial data on number of vehicles per household (y) and household
size (x)

I n = 5: (x1, y1) = (1, 1), (x2, y2) = (2, 2), (x3, y3) = (3, 2),
(x4, y4) = (4, 2), and (x5, y5) = (5, 3).

Recall want b2 = ∑n
i=1(xi � x̄)(yi � ȳ)/ ∑n

i=1(xi � x̄)2.

i xi yi (xi � x̄) (yi � ȳ ) (xi � x̄)(yi � ȳ ) (xi � x̄)2
1 1 1 -2 -1 2 4
2 2 2 -1 0 0 1
3 3 2 0 0 0 0
4 4 2 1 0 0 1
5 5 3 2 1 2 4
Sum 15 10 0 0 4 10
Mean x̄ = 3 ȳ = 2
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5.11 Computations for Correlation and Regression

Fitted line

Slope, intercept and line:

b2 =
∑n
i=1(xi � x̄)(yi � ȳ)

∑n
i=1(xi � x̄)2

=
4
10
= 0.4

b1 = ȳ � b2x̄ = 2� 0.4� 3 = 0.8by = 0.8+ 0.4x .

Fitted values of by = 0.8+ 0.4x for the �ve observations are:
I 1.2, 1.6, 2, 2.4, and 2.8.
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5.11 Computations for Correlation and Regression

R-Squared
Sum of squared residuals

∑n
i=1(yi � byi )2

= (1� 1.2)2 + (2� 1.6)2 + (2� 2)2 + (2� 2.4)2 + (3� 2.8)2

= 0.4,

Total sum of squares

∑n
i=1(yi � ȳ)

2

= (1� 2)2 + (2� 2)2 + (2� 2)2 + (2� 2)2 + (3� 2)2

= 2.0.

R-Squared

R2 = 1� 0.4
2.0

= 0.8.

I 80% of the variation in number of cars is explained by household size.

Note that the explained sum of squares is 2.0� 0.4 = 1.6.
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5.11 Computations for Correlation and Regression

Correlation Coe¢ cient

Sample correlation coe¢ cient

rxy =
∑n
i=1(xi � x̄)(yi � ȳ)p

∑n
i=1(xi � x̄)2 �∑n

i=1(yi � ȳ)2
=

4p
10� 2

=
2p
5
= 0.894.

Close to one
I so strong positive association between cars and household size.

As expected, r2xy = (2/
p
5)2 = 4/5 = 0.8 which equals R2.
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5.12 Nonparametric Regression

5.12 Nonparametric Regression

A �exible method for exploratory data analysis
I here the relationship appears to be linear
I local linear and lowess are two commonly-used methods.
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Key Stata Commands

Key Stata Commands

clear
use AED_HOUSE.DTA
sort size
list price size
correlate size price
regress price size
graph twoway (scatter price size) (line price size)
display _b[_cons] + _b[size]*2000 // predict at size=2000
predict double yhat // double precision is more accurate
generate double resid = y - yhat
summarize price yhat resid // residuals sum to zero
* local linear regression
lpoly price size, degree(1) bw(300)
* lowess with default bandwidth
lowess price size, generate(ylowess)
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Some in-class Exercises

Some in-class Exercises
1 Suppose we have a sample with three observations with (x , y) equal
to (1,5), (2,2) and (3,2). Calculate ∑3

i=1(xi � x̄)(yi � ȳ).
2 Variables x and y have sample variances of, respectively, 100 and 25,
and their sample covariance is 8. What is the sample correlation
between the two variables?

3 ∑50
i=1(xi � x̄)2 = 100, ∑50

i=1(xi � x̄)(yi � ȳ) = 10, and
∑50
i=1(yi � ȳ)2 = 25. Give the sample correlation between x and y .

4 For the data of the previous example, what is the slope coe¢ cient
from regression of y on an intercept and x?

5 Regression leads to �tted line by = 2+ 3x . What is the residual for
observation (x , y) = (2, 9)?

6 OLS regression of y on x for a sample of size 52 leads to residual sum
of squares 20 and total sum of squares 50. Compute the standard
error of the regression.

7 For the data of the previous example, compute R2.
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