Analysis of Economics Data Chapter 6: The Least Squares Estimator

© A. Colin Cameron Univ. of Calif. Davis

November 2022

CHAPTER 6: The Least Squares Estimator

- The sample leads to a fitted regression line $\hat{y} = b_1 + b_2 x$.
 - But different samples will lead to different fitted regression lines.
 - Example: in a random sample individual earnings increase by 7% with an extra year of schooling

 \star what can we say about the increase in the entire population?

- We suppose that there is an unknown **population line** $\beta_1 + \beta_2 x$
 - then the regression slope b_2 is an estimate of β_2
- This chapter
 - distribution of the regression estimates b_1 and b_2 .
- The subsequent chapter
 - confidence intervals and hypothesis tests for the slope parameter β_2 .

▲ □ ▶ ▲ □ ▶ ▲ □

• Key regression output for statistical inference:

Variable	Coefficient	Standard Error	t statistic	p value	95% conf	. interval
Size	73.77	11.17	6.60	0.000	50.84	96.70
Intercept	115017.30	21489.36	5.35	0.000	70924.76	159109.8

- The standard error of Size is an estimate of the precision of b_2 as an estimate of β_2
 - we need to explain how this is obtained
 - different assumptions lead to different standard errors
 - so important to go into details.
- The remaining statistics are studied in Chapter 7
 - the confidence interval for Size is one for β_2 .
 - ▶ the t statistic for Size is a test of $H_0: \beta_2 = 0$ against $H_a: \beta_2 \neq 0$

★ i.e. is there any relationship between Size and Price?

Outline

- Population and Sample
- ② Examples of Sampling from a Population
- Properties of the Least Squares Estimator
- Estimators of Model Parameters

Datasets: GENERATEDDATA, GENERATEDREGRESSIONS, CENSUSREGRESSIONS

6.1 Population Model: Conditional Mean of y given \times

- The sample model is a line $b_1 + b_2 x$.
- So we assume that the **population model** is also a line, denoted $\beta_1+\beta_2 x$
 - where β is "beta" and we use Greek letters for (unknown) parameters.
- More formally the **conditional mean** of y is assumed to be linear in x

$$\mathsf{E}[Y|X=x] = \beta_1 + \beta_2 x.$$

• The population conditional mean of Y given X = x

- is the probability-weighted average of all possible values of Y for a given value of x; e.g. earnings conditional on years of schooling
- is denoted E[Y|X = x]
- generalizes E[Y] in chapter 3 that is the probability-weighted average of all possible values of Y.

イロト 人間ト イヨト イヨト

Population Conditional Mean (continued)

• We assume that the conditional mean is linear in x

$$\mathsf{E}[Y|X=x] = \beta_1 + \beta_2 x.$$

• Commonly-used simpler notation is

$$\mathsf{E}[y|x] = \beta_1 + \beta_2 x.$$

- Note: In general the conditional mean need not be linear.
 - Case 1: E[Y|X = 1] = 5, E[Y|X = 2] = 7, E[Y|X = 3] = 9

* linear since this implies E[Y|X = x] = 3 + 2x.

- Case 2: E[Y|X = 1] = 5, E[Y|X = 2] = 7, E[Y|X = 3] = 12
 - ★ nonlinear as increase by 2 from X = 1 to X = 2 but increases by 5 from X = 2 to X = 3.
- In Chapter 9 we consider nonlinear conditional means.

< ロト < 同ト < ヨト < ヨト

Error Term

- y does not exactly equal $\beta_1 + \beta_2 x$
 - instead $E[y|x] = \beta_1 + \beta_2 x$.
- The difference between y and E[y|x] is called the **error term** u

$$u = y - \mathsf{E}[y|x]$$

= $y - (\beta_1 + \beta_2 x)$

• The error term u is **not observed as** β_1 and β_2 are unknown.

Error Term versus Residual - a crucial distinction

- *u* is **not observed** it is the difference between *y* and the unknown population line $\beta_1 + \beta_2 x$ (the solid line)
- *e* is **observed** it is the difference between *y* and the known fitted line $b_2 + b_2 x$ (the dashed line)

Error Term is assumed to have mean zero

• Since
$$u = y - (\beta_1 + \beta_2 x)$$
 we have

$$y = \beta_1 + \beta_2 x + u.$$

- The error term is assumed to be zero on average for each x value
 - sometimes $u_i > 0$ and so y_i is above the population line
 - sometimes $u_i < 0$ and so y_i is below the population line
 - but the long-run average of u_i (at each value of x) is zero.
- More precisely the error term has conditional mean zero

$$\mathsf{E}[u|x] = \mathsf{0}.$$

• This ensures that the population line is indeed $\beta_1 + \beta_2 x$.

$$\begin{array}{rcl} \mathsf{E}[y|x] &=& \mathsf{E}[\beta_1 + \beta_2 x + u|x] \\ &=& \beta_1 + \beta_2 x + \mathsf{E}[u|x] \\ &=& \beta_1 + \beta_2 x & \text{if } \mathsf{E}[u|x] = \mathbf{0} \end{array}$$

Population Conditional Variance of y given x

- The variability of the error term around the line will determine in part the precision of our estimates
 - greater variability is greater noise so less precision.
- We initially assume that the **error variance is constant** and does not vary with *x*

$$Var[u|x] = \sigma_u^2.$$

- This is called the assumption of homoskedastic errors
 - "skedastic" based on the Greek word for scattering
 - "homos" is the Greek word for same
 - this assumption can be relaxed (and is often relaxed later).
- The error term provides the only variation in *y* around the population line so then

$$\operatorname{Var}[y|x] = \operatorname{Var}[u|x] = \sigma_u^2.$$

Summary

- The bottom line:
 - Univariate analysis: $y_1, ..., y_n$ is a simple random sample with

$$Y_i \sim (\mu, \sigma^2).$$

Regression analysis: (x₁, y₁), ..., (x_n, y_n) is a simple random sample that allows the mean to vary with x, so

$$y_i|x_i \sim (\beta_1 + \beta_2 x, \sigma_u^2).$$

6.2 Examples of Sampling from a Population

- We consider two examples of sampling from a population
 - regression generalizations of the two examples in chapter 4.
- 1. Generate by computer 400 samples from an explicit model $y = \beta_1 + \beta_2 x + u$.
- 2. Select 400 samples from a finite population the U.S. 1880 Census for males aged 60-69 years.
- In both cases we run 400 regressions giving 400 estimates b_1 and b_2 and find
 - the average of the 400 slopes b_2 is close to β_2
 - the distribution of the 400 slopes b_2 is approximately normal
 - similar results hold for the intercept b_1 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Single Sample Generated from an Experiment

• Example with n = 5 is generate data from

$$y = \beta_1 + \beta_2 x + u = 1 + 2x + u$$

$$u \sim N(0, \sigma_u^2 = 4)$$

$$x = 1, 2, 3, 4, 5.$$

- note: added the assumption that errors are normally distributed
- Then a random normal generator for *u* yielded

Observation	х	E[y x]=1+2x	и	y=1+2x+u
1	1	$1+2 \times 1=3$	1.689889	4.689889
2	2	$1+2 \times 2=5$	3187171	4.681283
3	3	$1+2\times3=7$	-2.506667	4.493333
4	4	$1+2 \times 4=9$	-1.63328	7.366720
5	5	$1+2 \times 5=11$	-2.390764	8.609236

- Five generated observations
 - left panel: population regression line $y = \beta_1 + \beta_2 x = 1 + 2x$
 - right panel: sample regression line $\hat{y} = b_1 + b_2 x = 2.81 + 1.05x$

• note that
$$b_1 \neq \beta_1$$
 and $b_2 \neq \beta_2$.

Many Samples Generated from an Experiment

Samples of size 30 from

$$\begin{array}{rcl} y & = & \beta_1 + \beta_2 x + u = 1 + 2x + u \\ u & \sim & N(0, \sigma_u^2 = 4) \\ x & \sim & N(0, 1). \end{array}$$

- This is the same model for y as above
 - except now regressors are draws from a standard normal distribution
 - and n = 30.
- Next slide gives results from three samples.

Three Generated Samples yield three different lines

• Scatterplots and regression lines from three samples of size 30

intercepts and slopes vary across samples.

400 Generated Samples of Size 30

- 400 such samples were generated and fitted
 - left panel: $\beta_2 = 2$ and average of 400 slopes equals 1.979.
 - right panel: $\beta_1 = 1$ and average of 400 intercepts equals 1.039.
 - both histograms are approximately normal.

Many Samples Generated from a Finite Population

- Data from the 1880 Census
 - complete enumeration of the U.S. population in 1880.
- Relationship between
 - y = labforce = labor force participation
 - ★ 1 if in the labor force; 0 if not in the labor force
 - and x = age = 60 to 70 years.
- Population is of size 1,058,475 (men aged 60-70 years)
- Population mean of labforce is 0.8945
 - ▶ so 89.45% were in the labor force.

Population Regression Line

• Population regression line is

labforce
$$=eta_1+eta_2 imes$$
 age

Population regression line based on 1,058,475 observations is

$$labforce = 1.593 - 0.0109 \times age$$

- so $\beta_1=1.593$ and $\beta_2=-0.0109$
- with each extra year the probability of being in the labor force falls by 0.0109 or by 1.09 percentage points.

400 Samples of Size 200

- Draw 400 samples of size 200; regress labforce on age in each sample
 - large sample sizes as regression fit is poor: $R^2 \simeq 0.01$.
 - left panel: $\beta_2 = -0.0109$ and average of 400 slopes is -0.0115
 - right panel: $\overline{\beta}_1 = 1.593$ and average of 400 intercepts is 1.636
 - both histograms are approximately normal.

6.3 Properties of the Least Squares Estimator

• Slope estimate is a random variable

$$b_2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- different samples have different data and hence different b'_2s .
- We want to find $E[b_2]$, $Var[b_2]$ and a distribution for inference.
- If we assume the model is $y_i = \beta_1 + \beta_2 x_i + u_i$ then some algebra leads to the re-expression of the formula for b_2 as

$$b_2 = \beta_2 + rac{\sum_{i=1}^n (x_i - \bar{x}) u_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- Conditioning on the regressors x_i, the only source of randomness is the errors u_i.
- It follows that $E[b_2]$ and $Var[b_2]$ depend crucially on assumptions about the error u_i .

Data Assumptions

- Always assume that there is variation in the regressors
 - we rule out the case $x_i = \bar{x}$ for all i
 - this ensures $\sum_{i=1}^{n} (x_i \bar{x})^2 > 0$.
- Otherwise cannot compute b_1 and b_2 .
- Also at least 3 observations.

Population Assumptions

- Standard assumptions are that:
 - ▶ 1. The population model is $y_i = \beta_1 + \beta_2 x_i + u_i$ for all *i*.
 - ▶ 2. The error for the *ith* observation has mean zero conditional on
 x: E[u_i|x_i] = 0 for all *i*.
 - S. The error for the *ith* observation has constant variance conditional on x: Var[u_i|x_i] = σ²_u for all *i*.
 - ► 4. The errors for different observations are statistically independent: u_i is independent of u_i for all i ≠ j.
- Assumptions 1-2 are the crucial assumptions that ensure

$$\mathsf{E}[y_i|x_i] = \beta_1 + \beta_2 x_i.$$

• Assumption 3 is called conditionally homoskedastic errors

Mean and Variance of the OLS Slope Coefficient

• Given assumptions 1-2
$$(y = \beta_1 + \beta_2 x + u \text{ and } \mathsf{E}[u|x] = 0)$$

$$\mathsf{E}[b_2] = \beta_2.$$

• Given assumptions 1-4 (add V[u|x] = σ_u^2 and independent errors)

$$\sigma_{b_2}^2 = \mathsf{Var}[b_2] = \frac{\sigma_u^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- These results are proved in Appendix C.1
 - in the simpler case of a model without intercept.

Estimate of the Error Variance

- $\sigma_{b_2}^2 = Var[b_2]$ depends in part on σ_u^2 which is unknown.
- So estimation of $Var[b_2]$ requires an estimate of σ_u^2 .
- Estimate variance of the error σ_u^2 by the sample variance of the residuals

$$s_e^2 = rac{1}{n-2} \sum_{i=1}^n (y_i - \widehat{y}_i)^2$$

• We use 1/(n-2) as this guarantees s_{e}^{2} is unbiased for σ_{u}^{2} .

- ▶ the "intuition" is that $\hat{y} = b_1 + b_2 x$ is based on two estimated coefficients leaving (n-2) degrees of freedom.
- The standard error of the regression or the root mean squared error takes the square root to give an estimate of σ_u

$$s_e = \sqrt{rac{1}{n-2}\sum_{i=1}^n(y_i-\widehat{y}_i)^2}$$

Estimate of the Variance of the OLS Slope Coefficient

Under assumptions 1-4

$${\sf Var}[b_2] = \sigma_{b_2}^2 = rac{\sigma_u^2}{\sum_{i=1}^n (x_i - ar{x})^2}.$$

- Replace σ_u^2 with estimate $s_e^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i \hat{y}_i)^2$.
- The estimated variance of b_2 is then

$$\frac{s_e^2}{\sum_{i=1}^n (x_i - \bar{x})^2}.$$

• Taking the square root, the standard error of b_2 is

$$se(b_2) = \sqrt{\frac{s_e^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$
$$= \frac{s_e}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

Example: Computation of the Standard Error

- Artificial data on a sample of size five
 - (y, x) equals (1, 1), (2, 2), (2, 3), (2, 4) and (3, 5).
 - From chapter 5: $\hat{y} = 0.8 + 0.4x$.
 - so $\hat{y}_1 = 1.2$, $\hat{y}_2 = 1.6$, $\hat{y}_3 = 2.0$, $\hat{y}_4 = 2.4$, $\hat{y}_5 = 2.8$.

• Standard error of the regression $s_e = \sqrt{.1333333} = 0.365148$ since

$$s_e^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

= $\frac{1}{3} \{ (1-1.2)^2 + (2-1.6)^2 + (2-2)^2 + (2-2.4)^2 + (3-2.8)^2 \}$
= 0.13333.

• $\sum_{i=1}^{n} (x_i - \bar{x})^2 = 10$ calculated earlier in computing b_2 . So

$$se(b_2)^2 = \frac{s_e^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{0.133333}{10} = 0.0133333.$$

• Standard error of the slope b_2 is $se(b_2) = \sqrt{0.013333} = 0.115$.

When is the Slope Coefficient Precisely Estimated?

- The standard error of b_2 is $se(b_2) = \sqrt{\frac{s_e^2}{\sum_{i=1}^n (x_i \bar{x})^2}}$.
- **Better precision** = smaller standard error occurs if
 - 1. Model fits well (s_e^2 is smaller)

 - ▶ 2. Many observations (then ∑_{i=1}ⁿ (x_i x̄)² is larger).
 ▶ 3. Regressors are widely scattered (then ∑_{i=1}ⁿ (x_i x̄)² is larger).

Normal Distribution and the Central Limit Theorem

• Under assumptions 1-4

$$b_2 \sim (\beta_2, \sigma_{b_2}^2).$$

• The standardized variable

• In practice, σ_{b_2} is unknown as error standard deviation σ_u is unknown

• this will lead to use of the T distribution in chapter 7.

Aside: The OLS Intercept Coefficient

• Under assumptions 1-2

$$\mathsf{E}[b_1] = \beta_1.$$

• Given assumptions 1-4

$$\sigma_{b_1}^2 = \mathsf{Var}[b_1] = \frac{\sigma_u^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}.$$

• The standard error of b_2 is

$$se(b_2) = \sqrt{\frac{s_e^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}}.$$

• And $Z = (b_2 - \beta_2) / \sigma_{b_2}$ is N(0, 1) as $n \to \infty$.

Summary for the OLS Slope Coefficient

A summary given assumptions 1-4 is the following.

- y_i given x_i has conditional mean $\beta_1 + \beta_2 x_i$ and conditional variance σ_u^2 .
- Slope coefficient b_2 has mean β_2 and variance $\sigma_{b_2}^2 = \sigma_u^2 / \sum_{i=1}^n (x_i \bar{x})^2$.
- Standard error of b_2 is s_{b_2} where $se(b_2)^2 = s_e^2 / \sum_{i=1}^n (x_i \bar{x})^2$ and $s_e^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$.
- $Z = (b_2 \beta_2) / \sigma_{b_2}$ has mean 0 and variance 1.
- Sample size n → ∞, Z is standard normal distributed by the central limit theorem.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Least Squares in Practice

- Assumptions 1-2 are essential for least squares to be unbiased and consistent.
 - in particular assumption 2 rules out any correlation between x and u

★ e.g. rules out high x being associated with high u

- we maintain these assumptions
- chapter 16 discusses failures
- chapter 17 has some possible solutions.
- Assumptions 3-4 can be relaxed
 - ► a crucial practical part of regression is choosing the correct variation of assumptions 3 and 4
 - this is necessary to get correct standard errors
 - \star and hence correct confidence intervals and hypothesis tests
 - chapters 7.7 and 12.1 provide methods.

6.4 Estimators of Model Parameters

- Ideal properties of estimators were presented in Chapter 3.6 for estimation of the population mean.
- For centering
 - unbiasedness (on average)
 - consistency (almost perfect in infinitely large samples).
- For being best
 - minimum variance among all possible correctly-centered estimators.
- Bottom line: Under assumptions 1-4 OLS is essentially the best estimator of β_1 and β_2 .

Unbiased Estimator

• Given assumptions 1-2

$$\mathsf{E}[b_2|x_1,...,x_n] = \beta_2.$$

- b_2 is **unbiased** for β_2 (and b_1 is unbiased for β_1)
- if we obtain many samples yielding many b_2 then on average $b_2 = \beta_2$.
- Essentially we need sampling such that $E[y_i|x_i] = \beta_1 + \beta_2 x_i$.

Consistent Estimator

- A sufficient condition for a consistent estimator is that as $n
 ightarrow \infty$
 - any bias disappears and the variance goes to zero.
- So b_2 is **consistent** for β_2 as
 - b_2 is unbiased for β_2 given assumptions 1-2
 - $Var[b_2] \rightarrow 0$ as $n \rightarrow \infty$ given assumptions 1-4

* note: assumptions 3-4 can be relaxed and still get consistency.

Minimum Variance Estimator

- We want as precise an estimator as possible.
- OLS is the best linear unbiased estimator (BLUE) of β_2 under assumptions 1-4
 - \blacktriangleright lowest variance of all unbiased estimators that are a linear combination of the $y^\prime s$

★ recall
$$b_2 = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) / \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n w_i y_i$$

★ so linear in y_i .

- OLS is the best unbiased estimator (BUE) of β₂ if additionally u is normally distributed
 - so lowest variance of all unbiased estimators.
- OLS is the **best consistent estimator** (**BUE**) in standard settings under assumptions 1-4,
 - it has smallest variance among consistent estimators.

Key Stata Commands

```
* Generated data
clear
set obs 5
set rng kiss32 // uses old Stata random number generator
generate x = n // set x to equal the observation number
generate Eygivenx = 1 + 2*x
set seed 123456
generate u = rnormal(0,2)
generate y = Eygivenx + u
list
regress y x
twoway (scatter y x) (lfit y x)
twoway (scatter y x) (lfit ytrue x)
```

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○

Some in-class Exercises

- Suppose we know that y = 8 + 5x + u where E[u|x] = 0. Give the conditional mean of y given x and the error term for the observation (x, y) = (5, 30).
- OLS regression of y on x on a large sample leads to slope coefficient equal to 10 with standard error 4. Provide an approximate 95% confidence interval for β₂ in the model y = β₁ + β₂x + u.
- OLS regression of y on x on a large sample leads to slope coefficient equal to 20 with standard error 5. Test at level 0.05 the claim that the population slope coefficient equals 8.
- You are given the following ∑²⁷_{i=1}(x_i − x̄)² = 20 and ∑²⁷_{i=1}(y_i − ŷ_i)² = 400. Compute the standard error of the OLS slope coefficient under assumptions 1-4.
- Which of assumptions 1-4 ensure that OLS estimates are unbiased?

イロト 不得下 イヨト イヨト