Analysis of Economics Data Chapter 7: Statistical Inference for Bivariate Regression

> © A. Colin Cameron Univ. of Calif. Davis

> > November 2022

© A. Colin Cameron Univ. of Calif. Davis AED Ch.7: Bivariate Regression Inference

CHAPTER 7: Statistical Inference for Bivariate Regression

Recall univariate

- sample mean \bar{x} estimates population mean μ
- under suitable assumptions $t = \frac{\bar{x} \mu}{se(\bar{x})}$ is a draw from T(n-1)
- use this as basis for confidence intervals and hypothesis tests on μ .
- Now for bivariate regression
 - ▶ sample slope coefficient b_2 estimates population slope coefficient β_2
 - under suitable assumptions $t = \frac{b_2 \beta_2}{se(b_2)}$ is a draw from T(n-2)
 - use this as basis for confidence interval and hypothesis tests on β_2 .

Chapter 7

Outline

- Example: House Price and Size
- O The t Statistic
- Onfidence Intervals
- Tests of Statistical Significance
- Two-Sided Hypothesis Tests
- One-Sided Hypothesis Tests
- Ø Robust Standard Errors
- Examples

Dataset: HOUSE.

7.1 Example: House Price and Size

• Key regression output for statistical inference with n = 29:

Variable	Coefficient	Standard Error	t statistic	p value	95% conf	. interval
Size	73.77	11.17	6.60	0.000	50.84	96.70
Intercept	115017.30	21489.36	5.35	0.000	70924.76	159109.8

- $\widehat{price} = b_1 + b_2 size$ is an estimate of $price = \beta_1 + \beta_2 size$.
- Coefficient of Size
 - $b_2 = 73.77$ is least squares estimate of slope β_2
- Standard error of Size
 - the estimated standard deviation of b_2
 - ▶ the **default standard error** of *b*₂ equals 11.17.
 - (later: alternative heteroskedastic-robust standard errors).

Example (continued)

• We have with n = 29:

Variable	Coefficient	Standard Error	t statistic	p value	95% conf	f. interval
Size	73.77	11.17	6.60	0.000	50.84	96.70
Intercept	115017.30	21489.36	5.35	0.000	70924.76	159109.8

• Confidence interval for size

- 95% confidence interval for β_2
- is $b_2 \pm t_{27,.025} \times se(b_2) = (50.84, 96.70).$

• t statistic of Size tests whether there is any relationship

- is for test of $H_0: \beta_2 = 0$ against $H_a: \beta_2 \neq 0$
- ▶ in general t = (estimate hypothesized value)/standard error.
- $t_2 = b_2 / se(b_2) = 73.77 / 11.17 = 6.60.$
- p value of Size
 - is p-value for a two sided test
 - $p_2 = \Pr[|T_{27}| > |6.60|] = 0.00.$

7.2 The t Statistic

- The statistical inference problem
 - Sample: $\hat{y} = b_1 + b_2 x$ where b_1 and b_2 are least squares estimates
 - **Population**: $E[y|x] = \beta_1 + \beta_2 x$ and $y = \beta_1 + \beta_2 x + u$.
 - **Estimators**: b_1 and b_2 are estimators of β_1 and β_2 .

Goal

- inference on the slope parameter β_2 .
- This is based on a T(n-2) distributed statistic

$$T = rac{ ext{estimate} - ext{ parameter}}{ ext{standard error}} = rac{b_2 - eta_2}{se(b_2)} \sim T(n-2).$$

Why use the T(n-2) Distribution?

- Make assumptions 1-4 given in the next slide.
 - then $\operatorname{Var}[b_2] = \sigma_{ii}^2 / \sum_{i=1}^n (x_i \bar{x})^2$.
- But we don't know σ_{μ}^2
 - we replace it with the estimate $s_e^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i \hat{y}_i)^2$.
- This leads to noise in $\{se(b_2)\}^2 = s_a^2 / \sum_{i=1}^n (x_i \bar{x})^2$
 - ▶ so the statistic $T = (b_2 \beta_2) / se(b_2)$ is better approximated by T(n-2) than by N(0,1).
- The T(n-2) distribution
 - \blacktriangleright is the exact distribution if additionally the errors u_i are normally distributed
 - otherwise it is an approximation, one that computer packages use.

向下 イヨト イヨト

Model Assumptions

- Data assumption is that there is variation in the sample regressors so that $\sum_{i=1}^{n} (x_i \bar{x})^2 = 0.$
- Population assumptions 1-4
 - ▶ 1. The population model is $y = \beta_1 + \beta_2 x + u$.
 - ▶ 2. The error has mean zero conditional on x: $E[u_i|x_i] = 0$.
 - S. The error has constant variance conditional on x: Var[u_i|x_i] = σ²_u.
 - ► 4. The errors for different observations are statistically independent: u_i is independent of u_j.
- Assumptions 1-2 imply a linear conditional mean and yield unbiased estimators

$$\mathsf{E}[y|x] = \beta_1 + \beta_2 x.$$

Additional assumptions 3-4 yield the variance of estimators.

< 回 > < 三 > < 三 >

7.3 Confidence Interval for the Slope Parameter

• Recall: A 95 percent confidence interval is approximately

 $\mathsf{estimate} \pm 2 \times \mathsf{standard} \; \mathsf{error}$

• here a 95% confidence interval is $b_2 \pm t_{n-2;.025} \times se(b_2)$.

• A $100(1-\alpha)$ percent confidence interval for β_2 is

$$b_2 \pm t_{n-2,\alpha/2} \times se(b_2),$$

where

- b₂ is the slope estimate
- $se(b_2)$ is the standard error of b_2
- ► $t_{n-2;\alpha/2}$ is the critical value in Stata using invttail(n-2, $\alpha/2$).

What Level of Confidence?

- There is no best choice of confidence level
 - most common choice is 95% (or 90% or 99%)
- Interpretation
 - \blacktriangleright the calculated 95% confidence interval for β_2 will correctly include β_2 95% of the time
 - if we had many samples and in each sample formed a 95% confidence interval, then 95% of these confidence intervals will include the true unknown β₂.

Example: House Price and Size

• For regress house price on house size a 95% confidence interval is

 $b_2 \pm t_{n-2,\alpha/2} \times se(b_2)$ = 73.77 ± $t_{27,.025} \times 11.17$ = 73.77 ± 2.052 × 11.17 = 73.77 ± 22.93 = (50.84, 96.70).

• This is directly given in computer output from regression.

7.4 Tests of Statistical Significance

- A regressor x has **no relationship** with y if $\beta_2 = 0$.
- A test of "statistical significance" is a two-sided test of whether $\beta_2=0.$ So test

$$H_0: eta_2 = 0 \hspace{0.2cm} \text{against} \hspace{0.2cm} H_a: eta_2
eq 0.$$

• Test statistic is then

$$t=\frac{b_2}{se(b_2)}\sim T(n-2).$$

- Reject if |t| is large as then $|b_2|$ is large
 - How large?
 - Large enough that the value of |t| is a low probability event.
- Use either p value approach or critical value approach
 - ▶ reject at level 0.05 if $p = \Pr\{|T_{n-2}| > |t|\} < 0.05$
 - or equivalently reject at level 0.05 if $|t| > c = t_{n-2;.025}$.
- This method generalizes to other formulas for $se(b_2)$.

Example: House Price and Size

• For regress house price on house size with n = 29

$$t = \frac{b_2}{se(b_2)} = \frac{73.77}{11.17} = 6.60$$

•
$$p = \Pr[|T_{n-2}| > |t|] = \Pr[|T_{27}| > 6.60] = 0.000$$

• so reject $H_0: \beta_2 = 0$ at significance level 0.05 as p < 0.05.

•
$$c = t_{n-2;.025} = t_{27,.025} = 2.052$$

• so reject H_0 at significance level 0.05 as |t| = 6.60 > c.

• Conclude that house size is statistically significant at level 0.05.

Economic Significance versus Statistical Significance

- A regressor is of **economic significance** if its coefficient is of large enough value for it to matter in practice
 - economic significance depends directly on b_2 and the context
- By contrast, statistical significance depends directly on t which is the ratio b₂/se(b₂).
- With large samples $se(b_2)
 ightarrow 0$ as $n
 ightarrow \infty$
 - so we may find statistical significance
 - even if b_2 is so small that it is of little economic significance.

Tests based on the Correlation Coefficient

- An alternative way to measure statistical significance, used in many social sciences, uses the **correlation coefficient** $|r_{xv}|$.
- Then reject the null hypothesis of no association if $|r_{xy}|$ is sufficiently large
 - ▶ this gives similar results to tests based on $t = b_2/se(b_2)$ if default standard errors are used.
- Weaknesses of tests using the correlation coefficient
 - this method cannot relax assumptions 3-4
 - this method cannot be used if we wish to add additional regressors
 - and it tells little about economic significance.

7.5 Two-sided Hypothesis Tests

• A two-sided test on the slope coefficient is a test of

 $H_0:eta_2=eta_2^*$ against $H_a:eta_2
eqeta_2^*.$

• Use *t*-statistic where $\beta_2 = \beta_2^*$. So compute

$$t=\frac{b_2-\beta_2^*}{se(b_2)}\sim T(n-2).$$

• Reject if |t| is large as then $|b_2 - eta_2^*|$ is large

► How large?

\star Large enough that such a large |t| is a low probability event.

• Use either p value approach or critical value approach.

E SQA

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: House Price and Size

 \bullet For house price example with $\beta_2^*=90$

$$t = \frac{b_2 - 90}{se(b_2)} = \frac{73.77 - 90}{11.17} = -1.452.$$

- p-value approach
 - $p = \Pr[|T_{27}| > |-1.452| = 0.158.$
 - do not reject H_0 at level 0.05 as p = 0.158 > 0.05.
- Critical value approach at level 0.05:
 - $c = t_{27;.025} = 2.052.$
 - do not reject H_0 at level 0.05 as |t| = 1.452 < c = 2.052.
- In either case we do not reject $H_0: \beta_2 = 90$ against $H_a: \beta_2 \neq 90$ at level 0.05.
 - conclude that house price does not increase by \$90 per square foot.

- p-value approach: Compute $p = \Pr[|T_{n-2}| > |t|]$.
- critical value approach: compute c so that reject if |t| > c.

Rejection using p-values

- p-value approach (at level $\alpha = 0.05$)
 - Assume that $\beta_2 = \beta_2^*$, i.e. H_0 is true.
 - Obtain the p-value
 - ★ the probability (or significance level) of observing a $|T_{n-2}| \ge |t|$, where this probability is calculated under the assumption that $\beta_2 = \beta_2^*$.
 - If p < 0.05 then reject H_0
 - ★ reason there was less than .05 chance of observing our t, given $\beta_2 = \beta_2^*$.

Rejection using Critical values

- Critical value approach (at level $\alpha = 0.05$)
 - Assume that $\beta_2 = \beta_2^*$, i.e. H_0 is true.
 - Find the critical value
 - \star the value c such that $\Pr[|T_{n-2}| \ge c] = 0.05$
 - If |t| > c then reject H_0
 - ★ reason: there was less than .05 chance of observing our t, given $\beta_2 = \beta_2^*$.

Relationship of Tests to Confidence Interval

- For a two-sided test of $H_0: eta_2=eta_2^*$
 - if the null hypothesis value β₂^{*} falls inside the 100(1 − α) percent confidence interval then do not reject H₀ at significance level α.
 - otherwise reject H_0 at significance level α .
- House example
 - 95% confidence interval for β_2 is (50.84, 96.70)
 - ► reject $H_0: \beta_2 = 0$ at level 0.05 as the 95% confidence interval does not include 0.

7.6 One-sided Directional Hypothesis Tests

• One-sided test on the slope coefficient is a test of

Upper one-tailed alternative $H_0: \beta_2 \leq \beta_2^*$ against $H_a: \beta_2 > \beta_2^*$ Lower one-tailed alternative $H_0: \beta_2 \geq \beta_2^*$ against $H_a: \beta_2 < \beta_2^*$

- The statement being tested is specified to be the alternative hypothesis.
- Use same t-statistic as in two-sided case. So

$$t=\frac{b_2-\beta_2^*}{se(b_2)}\sim T(n-2).$$

• What will differ is the rejection region

- ► For $H_0: \beta_2 \leq \beta_2^*$ against $H_a: \beta_2 > \beta_2^*$ reject in the right tail ★ $p = \Pr[T_{n-2} > t]$
- ► For $H_0: \beta_2 \ge \beta_2^*$ against $H_a: \beta_2 < \beta_2^*$ reject in the left tail ★ $p = \Pr[T_{n-2} < t].$

Example: House Price and Size

- House price example suppose claim is that house price rises by less than \$90 per square foot, i.e. $\beta_2 < 90$.
- Test $H_0: \beta_2 \ge 90$ against $H_a: \beta_2 < 90$ (lower tailed alternative).

$$t = \frac{b_2 - 90}{se(b_2)} = \frac{73.77 - 90}{11.17} = -1.452.$$

p-value approach:

▶
$$p = \Pr[T_{27} < t] = \Pr[T_{27} < -1.452]$$

= $\Pr[T_{27} > 1.452] = \texttt{ttail}(27, 1.452) = 0.079 < 0.05.$

 \star where we have used the symmetry of the t distribution.

• Critical value approach at level 0.05:

► $c = -t_{27,.05} = -invttail(27,.05) = -1.70$ and t < -1.70.

- In either case we do not reject H_0 : $\beta_2 \ge 90$ at significance level 0.05.
- At level 0.05 there is not enough evidence to support the claim
 - note that the claim would be supported if we tested at level 0.10.

Computer generated t-statistic

- Computer gives a *t*-statistic
 - this is $t = b_2 / se(b_2)$
 - suitable for testing $\beta_2 = 0$.
- Computer gives a *p*-value
 - this is for a two-sided test of $H_0: \beta_2 = 0$ against $H_a: \beta_2 \neq 0$.
- For a one-sided test of statistical significance
 - ▶ if *b*₂ is of the expected sign then halve the printed p-value.
 - if b_2 is not of the expected sign then reject since p > 0.5
- Example: if expect $\beta_2 > 0$ then upper tailed alternative test
 - ▶ test $H_0: \beta_2 \leq 0$ against $H_a: \beta_2 > 0$ at level .05
 - if $b_2 > 0$ then halve the printed p value and reject H_0 if this is less than .05
 - if $b_2 < 0$ we will not reject H_0 i.e. conclude β_2 is not greater than zero.

- 4 週 ト - 4 三 ト - 4 三 ト

7.7 Robust Standard Errors

- **Default standard errors** (and associated t statistics, p values and confidence intervals) make assumptions 1-4
 - called default because this is what computer automatically computes

Robust standard errors

- Keep assumptions 1-2
- ▶ Relax assumptions 3-4 in three common ways depending on data type
- Are commonly-used in practice.
- In each case get an alternative formula for $se(b_2)$, say $se_{rob}(b_2)$
- Then base inference on

$$t=\frac{b_2-\beta_2}{se_{rob}(b_2)}.$$

Heteroskedastic Robust Standard Errors

- Relax assumption 3 that all errors have the same variance
 - called the assumption of homoskedastic errors.
- Instead allow $Var[u_i | \mathbf{x}_i] = \sigma_i^2$ which varies with i
 - called heteroskedastic errors.
- This is the standard assumption in modern econometrics.
- Then the heteroskedasticity-robust standard error for b₂ is

$$se_{het}(b_2) = rac{\sqrt{\sum_{i=1}^{n} e_i^2 (x_i - ar{x})^2}}{\sum_{i=1}^{n} (x_i - ar{x})^2}
eq rac{s_e}{\sqrt{\sum_{i=1}^{n} (x_i - ar{x})^2}}.$$

• Then $t = (b_2 - \beta_2) / se_{het}(b_2)$ is viewed as T(n-2) distributed.

Example: House Price and Size

- For the house price and size example
 - default standard errors
 - \star 11.17 and 21,489 for the slope and intercept
 - heteroskedastic-robust standard errors
 - ★ 11.33 and 20,928 for the slope and intercept
- Confidence interval using heteroskedastic-robust standard errors
 - ▶ $73.77 \pm t_{27,.025} \times 11.333 = (50.33, 97.02)$ compared t0 (50.84, 96.70)
- Test $H_0:eta_2=0$ against $H_a:eta_2
 eq 0$

$$t = \frac{b_2}{se(b_2)} = \frac{73.77 - 0}{11.33} = 6.51$$
 compared to 6.60.

Simulation Example of Heteroskedastic Errors

- Generate 100 observations as follows
 - size varies from 1700 to 3700 plus some random noise
 - ▶ price = 11500 + 74*size + zero-mean error
 - (1) error is homoskedastic $u_i \sim N(0, 23500^2)$
 - (2) error is heteroskedastic $u_i \sim \frac{(\text{size}_i 1700)}{1400} \times N(0, 23500^2)$

$$\star$$
 this error has variance $\left\{\frac{({\rm size}_i-1700)}{1400}\right\}^2\times 23500^2$ that differs across i

Stata code

```
set obs 100
generate size = 1700 + 20*_n + runiform(0,50)
generate uhomosked = rnormal(0,23500)
generate price = 11500 + 74*size + uhomosked
scatter price size || lfit price size
generate uheterosked = ((size-1500)/1400)*rnormal(0,23500)
generate price2 = 11500 + 74*size + uheterosked
scatter price2 size || lfit price size
```

Simulation Example (continued)

- First panel: homoskedastic errors are evenly distributed around the regression line.
- Second panel: heteroskedastic errors scattering around the regression line varies with the level of the regressor
 - in this case increasing with regressor size.

Other Robust Standard Errors

- For time series data where model errors may be correlated over time
 - use HAC robust.
- For data in clusters (or groups) where **errors are correlated within cluster** but are uncorrelated across clusters
 - > people in villages, students in schools, individuals in families, ...
 - panel data on many individuals over time
 - use cluster robust.
- These robust standard errors are presented in chapter 12.1.
- An essential part of any regression analysis is knowing which particular robust standard error method should be used.

Key Stata Commands

```
clear
use AED_HOUSE.DTA
regress price size
regress price size, level(99)
* Following gives F = t-squared and correct p-value
test size = 90
regress price size, vce(robust)
```

Some in-class Exercises

• We obtain fitted model $\hat{y} = 3.0 + 5.0 \times x$, $R^2 = 0.32$, $s_e = 4.0$, n = 200. Provide an approximate 95% confidence interval for the

population slope parameter.

- Test the claim that the population slope equals 2 at the 5% significance level.
- Which of assumptions 1-4 need changing if model errors are heteroskedastic?