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Chapter 9

CHAPTER 9: Models with Natural Logarithms

Economists are often interested in measuring proportionate changes
I e.g. price elasticity of demand
I e.g. percentage change in earnings with one more year of education
I natural logarithms are useful for this.

Additional uses of the natural logarithm include
I eliminating right skewness in data (chapter 2)
I compounding and the rule of 72
I linearizing exponential growth.
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9.1 Natural Logarithm Function De�nition of Natural Logarithm Function

9.1 Natural Logarithm Function

A logarithmic function is the reverse operation to raising a number
to a power

I e.g. 102 = 100 implies that log10 100 = 2
I if 10 raised to the power 2 equals 100 then the logarithm to the base
10 of 100 is 2.

More generally
ab = x ) loga x = b;

I the logarithm to the base a of x equals b.

Most obvious choice of the base a is base 10 (decimal system).

Economics often uses logarithm to base e, the natural logarithm
I where e ' 2.71828.... is a transcendental number like π

ln x = loge (x), x > 0.
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9.1 Natural Logarithm Function Approximating Proportionate Changes

Approximating Proportionate Changes

∆x = x1 � x0 is the change in x when x changes from x0 to x1.

The proportionate change in x is

∆x
x0
=
x1 � x0
x0

.

Example: Change from x0 = 40 to x1 = 40.4
I ∆x = 40.4� 40 = 0.4
I proportionate change in x is ∆x/x0 = 0.4/40 = 0.01
I and percentage change is 100� 0.01 = 1%.
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9.1 Natural Logarithm Function Approximating Proportionate Changes

Approximating Proportionate Changes (continued)

We have
d ln x
dx = 1

x from calculus
) ∆ ln x

∆x ' 1
x for small ∆x

x
) ∆ ln x ' ∆x

x rearranging

For small proportionate changes we use the approximation

∆ ln x '∆x
x

for small
∆x
x
(say

∆x
x
< 0.1).

Multiplying by 100 yields percentage changes, so equivalently

100�∆ ln x ' Percentage change in x .

Example: Change from x0 = 40 to x1 = 40.4
I approximation is ln(40.4)� ln(40) = 3.69883� 3.68888 ' 0.00995
I exact is ∆x/x0 = (40.4� 40)/40 = 0.01.
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9.2 Semi-elasticities and Elasticities De�nition of Semi-elasticity and Elasticity

9.2 Semi-elasticity and Elasticity

The semi-elasticity of y with respect to x is the ratio of the
proportionate change in y to the change in the level of x

Semi � elasticityyx =
∆y/y

∆x
.

I Multiplying by 100 gives the percentage change in y when x changes
by one unit.

Example: semi-elasticity of earnings with respect to years of schooling
is 0.08

I one more year of schooling is associated with a 0.08 proportionate
change in earnings

I one more year of schooling is associated with an 8% change in earnings.
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9.2 Semi-elasticities and Elasticities De�nition of Semi-elasticity and Elasticity

Semi-elasticity and Elasticity (continued)

The elasticity of y with respect to x is the proportionate change
of y for a given proportionate change in x

Elasticityyx =
∆y/y
∆x/x

=
∆y
∆x

� x
y
.

Example price elasticity of demand for a good is �2
I a one percent increase in price leads to a 2 percent decrease in demand.
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9.2 Semi-elasticities and Elasticities Approximation of Semi-elasticity and Elasticity

Approximation of Semi-Elasticity and Elasticity

Since
∆y
y
' ∆ ln y and

∆x
x
' ∆ ln x we obtain the following.

Semi-elasticities and elasticities can be approximated as following

Semi � elasticityyx =
∆y/y

∆x
' ∆ ln y

∆x

Elasticityyx =
∆y/y
∆x/x

' ∆ ln y
∆ ln x

OLS regression of models that �rst transform variables to natural
logarithms can directly estimate semi-elasticities and elasticities.

Example: if ln y = a+ b ln x then the slope b = ∆ ln y
∆ ln x = the elasticity.

I so we can obtain the semi-elasticity by regressing ln y on x .
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9.3 Log-linear, Log-log and Linear-log Models Log-linear Model

9.3 Log-linear Model

The log-linear or log-level model regresses ln y on x
I with �tted valuedln y = b1 + b2x
I the slope coe¢ cient b2 = ∆dln y/∆x is an estimate of the
semi-elasticity of y with respect to x

I we need y > 0 since only then is ln y de�ned.

This is a very common model for right-skewed data such as individual
earnings.
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9.3 Log-linear, Log-log and Linear-log Models Log-log Model

Log-log Model

The log-log model regresses ln y on ln x
I with �tted valuedln y = b1 + b2 ln x
I the slope coe¢ cient b2 = b2 = ∆dln y/∆ ln x is an estimate of the
elasticity of y with respect to x

I we need y > 0 and x > 0 since only then are ln y and ln x de�ned.

c
 A. Colin Cameron Univ. of Calif. Davis ()AED Ch.9: Models with Natural Logarithms November 2022 11 / 26



9.3 Log-linear, Log-log and Linear-log Models Linear-log Model

Linear-log Model

The linear-log model or level-log regresses ln y on lnx
I with �tted value by = b1 + b2 ln x
I b2/100 is an estimate of the change in y in response to a one percent
change in x .

I we need x > 0 since only then is ln x de�ned.
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9.3 Log-linear, Log-log and Linear-log Models Linear-log Model

Summary: Models with Logs

We have

Model Speci�cation Interpretation of b2
Linear by = b1 + b2x Slope: ∆y/∆x
Log-Linear dln y = b1 + b2x Semi-elasticity: (∆y/y )/∆x
Log-log dln y = b1 + b2 ln x Elasticity: (∆y/y )/(∆x/x)
Linear-log by = b1 + b2 ln x ∆y/(∆x/x)
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9.4 Example: Earnings and Education

9.4 Example: Earnings and Education

Dataset EARNINGS on 172 full-time male workers in 2010 aged 30
years.

Standard
Variable De�nition Mean Deviation Min Max
Earnings Annual earnings in $ 41413 25527 1050 172000
Lnearn Natural logarithm of Earnings 10.46 0.62 6.96 12.05
Education Years of completed schooling 14.43 2.73 3 20
Lneduc Natural logarithm of Education 2.65 0.22 1.10 3.00
n 171

OLS regression of Earnings (y) on Education (x) yields (t-statistics
in parentheses)

by = �31056
(�3.49)

+ 5021
(8.30)

x , R2 = .290
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9.4 Example: Earnings and Education Linear Model and Log-Linear Model

Linear Model and Log-Linear Model

Linear model: Earnings = -31056 + 5021 Education

Log-linear model: ln(Earnings) = 8.561 + 0.131 Education
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9.4 Example: Earnings and Education Comparison of Models

Comparison of Models with Earnings Data
y is earnings and x is education (with t-statistics in parentheses).

Model Estimates R2 Slope Semi-elasticity Elasticity
Linear by = �31056

(�3.49)
+ 5021
(8.30)

x 0.289 5021

Log-linear dln y = 8.561
(40.83)

+ 0.131
(9.21)

x 0.334 - 0.131

Log-log dln y = 6.543
(13.70)

+ 1.478
(8.23)

ln x 0.286 - - 1.478

Linear-log by = �102767
(�5.05)

+ 54452
(7.11)

ln x 0.230 - - -

Linear: one year more of education is associated with a $5,021
increase in earnings
Log-linear: one year more of education is associated with a 13.1%
increase in earnings
Log-log: 1% increase in education is associated with a 1.478%
increase in earnings
Linear-log: 1% increase in education is associated with a $544 (=
54452/100) increase in earnings.
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9.5 Further Uses of the Natural Logarithm Approximating Natural Logarithm

9.5 Approximating Natural Logarithm
ln(1+ x) = x � x 2

2 +
x 3
3 �

x 4
4 +

x 5
5 � � � �

I e.g. ln(1.1) = 1� 0.1+ 0.01
2 � 0.001

3 + � � �
' 1� 0.1+ 0.005� 0.00033 ' 0.0953.

So for small x we have the approximation

ln(1+ x) ' x , for, say, x < 0.1.

Approximation good for small x , but x increasingly overestimates
ln(1+ x)

I for x < 0.10 the approximation is within �ve percent of ln(1+ x)
I for x = 0.2, for example, the approximation is ten percent larger than
ln 1.2 = 0.1823.

�Small" x ��Larger" x
x=0.05 x=0.10 x=0.15 x=0.20 x=0.50

True Value ln(1+x) 0.0488 0.0953 0.1398 0.1823 0.4055
Approximation x 0.05 0.10 0.15 0.20 0.50
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9.5 Further Uses of the Natural Logarithm Compounding and the Rule of 72

Compounding and the Rule of 72

Rule of 72: a series growing at percentage rate r takes approximately
72/r periods to double.
Example: Invest at 4% per annum doubles in 72/4 = 18 years.
Reason:

I After n periods at rate r investment is (1+ r)n times larger.
I Money doubles if n solves (1+ r)n = 2
I Solution is n = ln 2/[ln(1+ r)].
I Approximate: ln(1+ r) ' r for small r .
I Approximate: ln 2 = 0.6931 ' 0.72.
I So n = ln 2/[ln(1+ r)] ' 0.72/r.

Example: r = 0.04 (so 4%)
I true value: ln 2/[ln(1+ 0.04)] = 17.67 so doubles in 17.67 years
I rule of 72: 72/4 = 18 so doubles in 18 years.

More precisely can have rule of 70, or 69, or 69.3.
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9.5 Further Uses of the Natural Logarithm Linearizing Exponential Growth

Linearizing Exponential Growth

Many data series grow according to a power law, or exponentially,
over time, rather than linearly.

xt = x0 � (1+ r)t

I Here x0 is value at time 0
I xt is value at time t
I r is the constant growth rate (or decay rate if r < 0).

Example: $100 invested at 3% annual interest rate for 10 years.
I annual growth rate is r = 3/100 = 0.03
I investment worth 100� (1.03)10 or $134.39 after ten years.
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9.5 Further Uses of the Natural Logarithm Linearizing Exponential Growth

Linearizing Exponential Growth (continued)

Taking the natural logarithm of xt = x0 � (1+ r)t yields

ln xt = ln(x0(1+ r)t )

= ln x0 + ln(1+ r)t

= ln x0 + ln(1+ r)� t
' ln x0 + r � t for small r .

Exponential growth is linear growth in logs!
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9.5 Further Uses of the Natural Logarithm Linearizing Exponential Growth

Example: S&P 500
Standard and Poor 500 Index 1927-2019

I no in�ation adjustment and no dividends
I left panel: exponential growth in level
I right panel: linear growth in logs

F growth rate ' 7.8�1.8
2019�1927 =

6.0
92 = 0.065 or 6.5% per annum
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9.6 Exponential Function

9.6 Exponential Function

What is e?
I e is an irrational number that is approximately 2.7182818
I e is a transcendental number, like π ' 3.142
I unlike for π, there is no simple physical interpretation for e.

The exponential function is denoted

exp(x) = ex .

The natural logarithm is the reverse operation to exponentiation.

Then
y = ex ) x = ln y .

I For example, e2 ' 7.38906 so ln 7.38906 ' 2.0.
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9.6 Exponential Function

Approximating Exponential

exp(x) = 1+ x + x 2
2! +

x 3
3! +

x 4
4! +

x 5
5! + � � �

I e.g. exp(1.1) = 1+ 0.1+ 0.01
2 + 0.001

6 + � � �
' 1+ 0.1+ 0.005+ 0.00016 ' 1.1052.

So for small x
ex ' 1+ x , for, say, x < 0.1.

Approximation good for small x , but increasingly underestimates ex

as x increases.

Table: Approximating exp(x) by 1+x.

�Small" x �Larger" x
x=0.05 x=0.10 x=0.15 x=0.20 x=0.50

True Value exp(x) 1.0513 1.1052 1.1618 1.2214 1.6487
Approximation 1+x 1.05 1.10 1.15 1.20 1.50
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9.6 Exponential Function Compound Interest Rates

Compound Interest Rates

Consider compound for a year and �nd the annual percentage yield
(APY).

Suppose have 12% per annum then APY= 12%.

Suppose compound monthly at 12/12 = 1% per month
I (1+ 0.01)12 = 1.12683 so APY= 12.683%.

Suppose compound daily at 12/365% per day
I (1+ 0.12/365)365 = 1.127547 so APY= 12.747%.

If continuously compound for progressively smaller intervals at rate r

(1+ r/n)n ! er as n! ∞.

Here (1+ 0.12/n)n ! exp(0.12) = 1.12750 or 12.750%.
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Key Stata Commands

Key Stata Commands

clear
use AED_EARNINGS.DTA
generate lnearn = ln(earnings)
generate lneduc = ln(education)
* Linear Model
regress earnings education, vce(robust)
* Log-linear Model
regress lnearn education
* Log-log Model
regress lnearn lneduc
* Linear-log Model
regress earnings lneduc
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Some in-class Exercises

Some in-class Exercises

1 Consider numbers a and b with ln a = 3.20 and ln b = 3.25. Using
only this information, what is the approximate percentage change in
going from a to b?

2 Demand for a good falls from 100 to 90 when the price increases from
20 to 21. Compute the price elasticity of demand.

3 We estimate ln y = 3+ 0.5 ln x . Give the elasticity of y with respect
to x .

4 We estimate ln y = 6+ 0.2x . Give the response of y when x changes
by one unit.

5 How long does it take for prices to double given 4% annual in�ation?
6 Suppose y = α� (1+ β)x . Explain how to estimate α and β using
OLS.
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