Analysis of Economics Data Chapter 11: Statistical Inference for Multiple Regression

> © A. Colin Cameron Univ. of Calif. Davis

> > November 2022

© A. Colin Cameron Univ. of Calif. Davis AED Ch.11: Statistical Inference for Multiple

CHAPTER 11: Statistical Inference for Multiple Regression

- Consider statistical inference for the relationship between house price and several variables
 - size, number of bedrooms,
- Mostly a straight-forward extension of bivariate regression
 - now use T(n-k) distribution where k = number of regressors including intercept.
- New is:
 - tests of joint hypotheses (rather than a single hypothesis).

Outline

- Properties of the Least Squares Estimator
- Istimators of Model Parameters
- Onfidence Intervals
- Output And Annual States an
- Joint Hypothesis Tests
- F Statistic under Assumptions 1-4
- Presentation of Regression Results

Example for this Chapter with dependent variable price

Variable	Coefficient	St. Error	t statistic	p value	95% conf. int.	
Size	68.37	15.39	4.44	0.000	36.45	101.29
Bedrooms	2685	9193	0.29	0.773	-16379	21749
Bathrooms	6833	15721	0.43	0.668	-25771	39437
Lot Size	2303	7227	0.32	0.753	-12684	17290
Age	-833	719	-1.16	0.259	-2325	659
Month Sold	-2089	3521	-0.59	0.559	-9390	5213
Intercept	137791	61464	2.24	0.036	10321	265261
n	29					
F(6,22)	6.83					
p-value for F	0.0003					
R ²	0.651					
Adjusted R ²	0.555					
St. error	24936					

11.1 Properties of the Least Squares Estimator

Data assumption

- There is variation in the sample regressors so regressors are not perfectly correlated with each other
- generalize bivariate regression cannot estimate b_2 if $\sum_{i=1}^{n} (x_i \bar{x})^2 = 0$.
- If this data assumption does not hold then it is not possible to estimate all k regression coefficients
 - ▶ see chapter 10.8 and later chapter on multicollinearity.

Population Model Assumptions

- These are a straightforward extension of those for bivariate regression.
- Population model:

 $y = \beta_1 + \beta_2 x_2 + \beta_2 x_3 + \cdots + \beta_k x_k + u.$

- ② Error has zero mean conditional on all regressors: $E[u_i|x_{2i},...,x_{ki}] = 0, \quad i = 1,...,n.$
- Solution Sector Sector
- Server a statistically independent u_i is independent of u_j, i ≠ j.

Population Model Assumptions (continued)

• Key is that Assumptions 1-2 imply the **population regression line** or the **conditional mean** of *y* given *x*₁, ..., *x_k* is

$$\mathsf{E}[y|x_2,...,x_k] = \beta_1 + \beta_2 x_2 + \beta_3 x_3 + \cdots + \beta_k x_k.$$

• Assumptions 2-4 imply

$$u_i \sim [0, \sigma_u^2]$$
 and is independent over *i*.

Assumptions 1-4 imply

$$\begin{aligned} y_i | x_{2i}, \dots, x_{ki} &\sim & [(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki}), \ \sigma_u^2] \\ & \text{and is independent over } i. \end{aligned}$$

- Similar to univariate: μ replaced by $\beta_1 + \beta_2 x_2 + \cdots + \beta_k x_k$.
- Similar to bivariate: $\beta_1 + \beta_2 x_2$ replaced by $\beta_1 + \beta_2 x_2 + \cdots + \beta_k x_k$.

Properties of Least Squares Estimates

• Mean of b_j is β_j under assumptions 1-2.

• Variance of
$$b_j$$
 is $Var[b_j] = \sigma_{b_j}^2 = \sigma_u^2 / \sum_{i=1}^n \widetilde{x}_{ji}^2$

- ▶ where x̃_{ji} is the residual from regressing x_{ji} on an intercept and all regressors other than x_{ji}
- from chapter 10 $b_j = \sum_{i=1}^n \widetilde{x}_{ji} y to_i ensure / \sum_{i=1}^n \widetilde{x}_{ji}^2$.
- Standard error of the regression is s_e where $s_e^2 = \frac{1}{n-k} \sum_{i=1}^n (y_i \hat{y}_i)^2$
 - same as for bivariate except divide by n k
 - this ensures $E[s_e^2] = \sigma_u^2$ given assumptions 1-4.
- Estimated variance of b_j is $s_e^2 / \sum_{i=1}^n \widetilde{x}_{ji}^2$.
- Standard error of estimator b_j is $se(b_j) = s_e / \sqrt{\sum_{i=1}^n \widetilde{x}_{ji}^2}$.

When is a Slope Coefficient Precisely Estimated?

• Standard error of estimator b_j is $se(b_j) = s_e / \sqrt{\sum_{i=1}^n \widetilde{x}_{ji}^2}$.

- So more precise estimate when
 - model fit is good so se is small
 - when there are many observations as then $\sum_{i=1}^{n} \tilde{x}_{ji}^2$ is big
 - when $|\tilde{x}_{ji}|$ is big
 - which is the case if there is big dispersion in the jth regressor after controlling for the other regressors.

The t-Statistic

- Confidence intervals and hypothesis tests are based on the *t*-statistic.
- Given assumptions 1-4:

$$t_j = rac{b_j - eta_j}{se(b_j)} \sim T(n-k)$$
 approximately

• now
$$T(n-k)$$
 rather than $T(n-2)$.

- The result is exact if additionally the errors are normally distributed.
- How large should the sample be?
 - Larger than in the bivariate regression case.

11.2 Estimators of Model Parameters

- We want OLS estimator b_j for the coefficient j^{th} regressor x_j to be
 - centered on β_i : unbiased and consistent
 - smallest variance (best) among such estimators.
- Centering
 - b_j is **unbiased** for β_j (E[b_j] = β_j) given assumptions 1-2
 - b_j is consistent for β_j (b_j → β_j as n → ∞) given assumptions 1-2 plus a little more to ensure Var[b_j] → 0 as n → ∞.
- Smallest variance
 - b_j is **best linear unbiased for** β_j given assumptions 1-4
 - ★ i.e. smallest variance among unbiased estimators that are a weighted average of y_i , $\sum_i a_i y_i$, with weights a_i depending on the regressors.
 - b_j is best unbiased for β_j given assumptions 1-4 and normally distributed errors
 - ★ i.e. minimum variance among unbiased estimators.

11.3 Confidence Intervals

- ullet Usual estimate \pm critical t-value imes standard error.
- A $100(1-\alpha)$ percent confidence interval for β_i is

$$b_j \pm t_{n-k;\alpha/2} \times se(b_j)$$
,

where

- b_i is the slope estimate
- $se(b_j)$ is the standard error of b_j
- $t_{n-k,\alpha/2}$ is the critical value
- e.g. in Stata use invttail $(n k, \alpha/2)$.
- A 95 percent confidence interval is approximately

$$b_j \pm 2 \times se(b_j).$$

Confidence Interval Example

• Regression of house price on house size and five other regressors

- output given at start of slides
- includes a 95% confidence interval for β_{SF} is (36.45, 100.29).
- Manual computation using $b_{SF} = 68.37$ and $se(b_{SF}) = 15.39$:

$$b_{SF} \pm t_{n-k,\alpha/2} imes se(b_{SF})$$

$$= 68.37 \pm t_{22,.025} \times 15.39$$

- $= \ \ 68.37 \pm 2.074 \times 15.39$
- $= 68.37 \pm 31.92$
- = (36.45, 100.29).

11.4 Tests on Individual Parameters

$$ullet$$
 Two-sided test that $eta_j=eta_j^*$

 $H_0:eta_j=eta_j^*$ against $H_a:eta_j
eqeta_j^*$

Use

$$t = \frac{(b_j - \beta_j^*)}{se(b_j)} \sim T(n-k).$$

• Can also do one-sided tests.

Tests of Statistical Significance

- Test whether there is any relationship between y and x_j (after controlling for the other regressors).
- Does $\beta_i = 0$? Formally test

 $H_0: eta_j = 0$ against $H_a: eta_j
eq 0$

• Use t-statistic where $eta_j=$ 0. So simply

$$t=\frac{b_j}{se(b_j)}\sim T(n-k).$$

• Aside: |t|>1 if $ar{R}^2$ increases when a regressor is added

 so usual *t*-test is more demanding than including regressor if adjusted *R*² increases.

Example: House Price

• Test of statistical significance of size for house price example

•
$$t = \frac{b_{Size}}{se(b_{Size})} = \frac{68.37}{15.39} = 4.44$$

so for two-sided test

*
$$p = 2 * ttail(22, 4.44) = 0.0002 < 0.05$$
 so reject H_0
* or $c = invttail(22, .05) = 1.717$ and $|t| = 4.44 > c$ so reject H_0

conclude that Size is statistically significance at level 0.05.

• Test of
$$H_0: \beta_2 = 50$$
 against $H_a: \beta_2 \neq 50$

►
$$t = \frac{b_{Size} - 50}{se(b_{Size})} = \frac{68.37 - 50}{15.39} = 1.194.$$

- so for two-sided test
 - * p = 2 * ttail(22, 1.194) = 0.245 > 0.05 so do not reject H_0
- conclude that Size is statistically significance at level 0.05.

11.5 Joint Hypothesis Tests

Suppose we wish to test more than one restriction on the parameters.

- e.g. both $\beta_2 = 0$ and $\beta_3 = 0$
- e.g. all slope parameters equal zero
- e.g. $\beta_2 = -\beta_3$ and $2\beta_4 + \beta_6 = 9$.
- Tests of several restrictions are called tests of joint hypotheses.
- t tests can handle test of only one restriction on the parameters.
- Instead use F tests and the F distribution
 - this nests t tests and t distribution as a special case
 - for tests of a single restriction $F = t^2$.

11.5 Joint Hypothesis Tests: F Distribution

- The F distribution is for a random variable that is > 0
 - it is right-skewed
 - it depends on two parameters v_1 and v_2 called degrees of freedom
 - v_1 = number of restrictions; $v_2 = n k$.

- L - L - L

Probabilities and Inverse Probabilities for the F

- General notation is $F(v_1, v_2)$.
- The critical values (and p values) for the F distribution vary with the two degrees of freedom
- For F_{v_1,v_2} the critical value (area in right tail) is
 - decreasing in both v_1 and v_2
- Some representative values
 - ▶ 5% and one restriction: $F_{1,30;.05} = 4.17$ and $F_{1,\infty;.05} = 3.84$
 - ▶ 5% and ten restrictions: $F_{10,30;.05} = 2.16$ and $F_{10,\infty;.05} = 1.83$.
- Examples in Stata
 - probability: $Pr[F_{10,30} > 2] = Ftail(10,30,2)$.
 - inverse probability: $F_{10,30;.05} = invFtail(10,30,.05)$

The F Statistic

- Consider two models that are nested in each other.
- General model: **unrestricted model** or **complete model**, is a model with *k* regressors, so

$$y = \beta_1 + \beta_2 x + \beta_3 x_3 + \dots + \beta_k x_k + u.$$

- **Restricted model** or **reduced model** places q restrictions on $\beta_1, \beta_2, ..., \beta_k$.
 - e.g. all regressors but the intercept are dropped so q = k 1.
 - e.g. a subset of g regressors is included so q = k g.
 - e.g. one regressor is dropped so q = 1.
- In general the formula for the F statistic is complicated
 - just use computer output.

F Tests

• An F test is a two-sided test of

- ► H₀: The q parameter restrictions implied by the restricted model are correct
- against H_a: The q parameter restrictions implied by the restricted model are incorrect.
- Define α to be the desired **significance level** of the test.

• p-value:
$$p = \Pr[F_{q,n-k} \ge F]$$

- H_0 is rejected if $p < \alpha$.
- critical value: c is such that $c = F_{q,n-k,\alpha}$, equivalently $\Pr[|F_{q,n-k}| \ge c] = \alpha$
 - H_0 is rejected if F > c.

Example: Test of Overall Statistical Significance

• Special case that is a test

$$\begin{split} H_0: \beta_2 = 0, ..., \beta_k = 0 \\ \text{against} \quad H_a: \text{ At least one of } \beta_2, ..., \beta_k \neq 0. \end{split}$$

• Regression programs automatically provide this in regression output.

• For house price example with k = 7 regressors including intercept

- Test statistic is F(q, n-k) = F(6, 22) distributed
- F = 6.83 with p = 0.0003
- so reject H_0 at level 0.05.
- conclude regressors are jointly statistically significant.
- Test only says that the regressors are jointly statistically significant
 - it does not say which regressors are individually statistically significant

 \star in this example only Size was individually statistically significant at 5%.

Test of Subsets of Regressors

- Clearly variable Size matters
 - suppose we want to test whether the remaining regressors matter.

• The unrestricted model or complete model has all k regressors

$$y = \beta_1 + \beta_2 x_2 + \cdots + \beta_g x_g + \beta_{g+1} x_{g+1} + \cdots + \beta_k x_k + \varepsilon$$

 The restricted model or reduced model has only the first g regressors

$$y = \beta_1 + \beta_2 x_2 + \cdots + \beta_g x_g + \varepsilon.$$

• We test whether the last (g - k) are statistically significant.

$$\begin{array}{l} H_0: \beta_{g+1}=0,...,\beta_k=0\\ \text{against} \quad H_a: \text{ At least one of }\beta_{g+1},...,\beta_k\neq 0. \end{array}$$

• A specialized test command yields F = 0.417 with p = 0.832 > 0.05

- we do not reject $H_0: \beta_3 = 0, ..., \beta_7 = 0$ at significance level 0.05
- the additional five regressors are jointly statistically insignificant
- it is best to just include *Size* as a regressor.

Further Details

- For test of a single restriction $F = t^2$
 - the F test gives the same answer as a two-sided t test
 - the p value is the same
 - the critical value for F equals that for t squared

★ in particular for large *n* the F(1, n - k) critical value is $1.96^2 = 3.84$.

- Some packages report chisquared tests rather than F tests
 - in large samples with $n \to \infty$
 - q times F(q,∞) is χ²(q) distributed (chi-squared with q degrees of freedom).
 - to get the F-statistic divide the χ^2 -statistic by q.
- Separate tests of many hypotheses
 - with many separate tests there is high probability of erroneously finding a variable statistically significant
 - adjusting for multiple testing is beyond the scope of this text.

E Sac

11.6 F Statistic under Assumptions 1-4

- The proceeding presentation of the *F* test also applies following regression with robust standard errors.
- Now specialize to default standard errors (assumptions 1-4)
 - then analysis simplifies and provides some insights.
- Intuitively, reject restrictions if the restricted model has much poorer fit.
 - Reject restrictions if $RSS_r RSS_u$ is large where
 - \star RSS_r is residual sum of squares in restricted model
 - ★ RSS_u is residual sum of squares in unrestricted model
- Under assumptions 1-4 the F statistic is a function of $RSS_r RSS_u$.

F Statistic under Assumptions 1-4

• Under H_0 and assumptions 1-4 the **F-statistic** can be shown to be

$$F = \frac{(RSS_r - RSS_u)/q}{RSS_u/(n-k)} \sim F(q, n-k)$$

- This is a two-sided test there is no one-sided test.
- Reject *H*₀ when *F* is large, since then restricted model fits much worse.
 - ▶ reject at level α if $p = \Pr[F_{k-1,n-k} > F]$ is $< \alpha$
 - * Stata: p = Ftail(k 1, n k, F)
 - or reject at level α if F< $c = F_{k-1,n-k;\alpha}$
 - * Stata: $c = invFtail(k 1, n k, \alpha)$.

Test Overall Statistical Significance under Assumptions 1-4

- Test $H_0: \beta_2 = 0, ..., \beta_k = 0$ vs. $H_a:$ At least one of $\beta_2, ..., \beta_k \neq 0$.
- The restricted model is an intercept-only model with $\widehat{y}_i = \bar{y}$

• so
$$RSS_r = \sum_{i=1}^n (y_i - \bar{y})^2 = TSS_r$$

• Some algebra then shows that in this special case

$$F = \frac{R^2/(k-1)}{(1-R^2)/(n-k)} \sim F(k-1, n-k),$$

• where R^2 is the usual R^2 from the regression of y on all regressors.

- Example: House price regressed on all regressors
 - $R^2 = 0.6506$, n = 29, k = 7
 - F = (.6506/6)/(.3494/22) = 6.827.
 - ▶ *p* = *Ftail*(6, 22, 6.827) = 0.000342
 - reject H_0 at 5% since p < 0.05.

Test of Subsets of Regressors under Assumptions 1-4

• Test whether regressors other than house price are statistically significant

► so test
$$H_0: \beta_{bed} = 0, \beta_{bath} = 0..., \beta_{month} = 0.$$

Manual computation

- Full model: $RSS_u = 13679397855$ (k = 7 including intercept).
- Restricted model: $RSS_r = 14975101655 \ (g = 2: Size \text{ plus intercept})$ $F = \frac{(14975101655 13679397855)/5}{-0.417} = 0.417$

$$F = \frac{(14973101033 - 13079397035)/3}{13679397855/22} = 0.417$$

▶
$$p = Ftail(5, 22, .417) = 0.832 < 0.05$$

- ▶ c = invFtail(22, .05, 5, 22) = 2.66
- do not reject H_0 at level 0.05.
- The additional five regressors are not jointly statistically significant at 5%.

Relationship between F test and adjusted R-Squared

- Under assumptions 1-4
 - as regressors are added \bar{R}^2 increases if and only if F > 1
 - if a single regressor is added \overline{R}^2 increases if and only if |t| > 1.
- So including a regressor or regressors on the basis of increasing \bar{R}^2 is a much lower threshold than testing at 5%.

11.7 Presentation of Regression Results

- Save space by not reporting all of b, s_b , t and p.
- 1. Report just coefficients and standard errors

$$\widehat{Price} = 111691 + 73.77 \times Size + 1553 \times Bedrooms; R^2 = 0.618.$$

• 2. Report just coefficients and t statistics for $H_0: \beta_2 = 0$

$$\widehat{\textit{Price}} = \underbrace{111691}_{(5.35)} + \underbrace{72.41}_{(6.60)} \times \underbrace{\textit{Size}}_{(0.20)} \times \textit{Bedrooms; R}^2 = 0.618.$$

• 3. Report just coefficients and p values for $H_0: \beta_2 = 0$

$$\widehat{\textit{Price}} = \underbrace{111691}_{(0.000)} + \underbrace{72.41}_{(0.000)} \times \textit{Size} + \underbrace{1553}_{(0.845)} \times \textit{Bedrooms; R}^2 = 0.618.$$

- 4. Report just coefficients and 95% confidence intervals.
- 5. Report just coefficients and asterisks:
 - ▶ one if statistically significant at 10%
 - \blacktriangleright two if statistically significant at 5%
 - three if statistically significant at 1%.

11.7 Presentation of Regression Results

Different ways to present results from the same regression

same coefficients but different quantities in parentheses.

	Results 1	Results 2	Results 3	Results 4	Results 5
In parentheses:	St.errors	t statistics	p-values	95% Conf.int.	
Size	72.41	72.41	72.41	72.41	72.41***
	(13.29)	(5.44)	(0.000)	(45.07,99.75)	
Bedrooms	1553	1553	1553	1553	1553
	(7847)	(0.20)	(0.845)	(-14576,17682)	
Intercept	11691	11691	11691	11691	11691***
	(27589)	(4.05)	(0.000)	(54981,168401)	
R ²	0.618	0.618	0.618	0.618	0.618
F(2,26)	21.93	21.93	21.93	21.93	21.93
n	29	29	29	29	29

```
Key Stata Commands
```

Some in-class Exercises

- We obtain fitted model $\hat{y} = 3.0 + 5.0 \times x_2 + 7.0 \times x_3$, n = 200, with standard errors given in parentheses. Provide an approximate 95% confidence interval for the population slope parameter.
- **②** For the preceding data is x_2 statistically significant at level 0.05?
- For the preceding data test the claim that the coefficient of x₃ equals 10.0 at significance level 0.05.
- Consider the model $y = \beta_1 + \beta_2 x_2 + \beta_2 x_2 + \cdots + \beta_k x_k + u$. We wish to test the claim that the only regressors that should be included in the model are x_2 and x_3 . State H_0 and H_a for this test, and give the degrees of freedom for the resultant F test.