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Chapter 15

CHAPTER 15: Regression with Transformed Variables

Regression often involves variables that have been transformed
I e.g. quadratics, natural logarithm, interactions (products of variables)
I e.g. byi = b1 + b2x2i + b3x3i + b3x2i � x3i .

OLS estimation remains �ne if model is still linear in coe¢ cients
b1, ..., bk .

But interpreting results is more di¢ cult when the model is nonlinear
in the underlying variables

I the marginal e¤ect ∆by/∆x is no longer the slope coe¢ cient
I plus there are di¤erent ways to compute ∆by/∆x
I and if y is transformed then prediction of y becomes more di¢ cult.
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15.1 Example: Earnings, Gender, Education and Type of Worker

15.1 Example: Earnings, Gender, Education, Worker Type
Dataset EARNINGS_COMPLETE

I 872 female and male full-time workers aged 25-65 years in 2000.

Standard
Variable De�nition Mean Deviation Min Max
Earnings Annual earnings in $ 56369 51516 4000 504000
Age Age in years 43.31 10.68 25 65
Gender = 1 if female 0.433 0.496 0 1
Education Years of schooling 13.85 2.88 0 20
d1 or dself = 1 if self-employed 0.089 0.286 0 1
d2 or dpriv =1 if private sector employee 0.760 0.427 0 1
d3 or dgovt =1 if government sector employee 0.149 0.356 0 1
Agesq Age squared 1989.7 935.7 625 4225
Educbyage Education times Age 598.8 193.69 0 1260
Hours Usual hours worked per week 44.34 8.50 35 99
Lnhours Natural logarithm of Hours 3.78 0.16 3.56 4.60
Lnearnings Natural logarithm of Earnings 10.69 0.68 8.29 13.13
n 872
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15.2 Marginal E¤ects for Nonlinear Models

15.2 Marginal E¤ects for Nonlinear Models

Examples of nonlinear models
I Quadratic: by = b1 + b2x + b3x2
I Interactions: by = b1 + b2x + b3z + b3(x � z)
I Natural logarithms: ln by = b1 + b2x + b3z .

The marginal e¤ect (ME) on the predicted value of y of a change
in a regressor is

MEx =
∆by
∆x
.

In nonlinear models we get di¤erent results depending on method
I calculus method: use the derivative dby/dx (for very small ∆x)
I �nite di¤erence methods: such as ∆x = 1.
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15.2 Marginal E¤ects for Nonlinear Models

Calculus method versus Finite Di¤erence Method

Plotted curve is y = 12� 2� (x � 3)2

I calculus method at x = 2 : dydx = 12� 4x = 4 at x = 2.
I �nite di¤erence for x = 2 to x = 3 : ∆y = 12� 10 = 2.

Tangent at x=2
has slope 14­10=4
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Finite difference method
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15.2 Marginal E¤ects for Nonlinear Models AME, MEM and MER

AME, MEM and MER
Marginal e¤ect MEx = ∆by/∆x varies with the level of x .

I So what value of x do we evaluate at?

1. Average marginal e¤ect (AME): evaluate for each i and average

AME =
1
n ∑n

i=1MEi =
1
n ∑n

i=1

∆byi
∆xi

.

2. Marginal e¤ect at the mean (MEM): evaluate ME at x = x̄

MEM = MEjx=x̄ =
∆by
∆x

����
x=x̄

.

3. Marginal e¤ect at a representative value (MER): evaluate ME at
a representative value of x , say x = x�

MER = MEjx=x � =
∆by
∆x

����
x=x �

.

Most often use AME, with MEi evaluated using calculus methods.
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15.2 Marginal E¤ects for Nonlinear Models Computation of Marginal E¤ects

Computation of Marginal E¤ects

Suppose MEx = 2x2 + 3z2 so also depends on z .

For AME evaluate for each individual and average
I AMEx = 1

n ∑ni=1(2x
2
i + 3z

2
i ).

For the MEM set all variables at their means
I MEMx = 2x2 + 3z2.

For MER evaluate at a particular value x� of x
I with z taking the values for each individual
MERx = 2(x�)2 + 1

n ∑ni=1 3z
2
i

I or additionally specify a particular value z� of z , so
MERx = 2(x�)2 + 3(z�)2.

Some statistical packages provide post-estimation commands to
calculate AME, MEM and MER

I these additionally provide standard errors and con�dence intervals for
these estimates.
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15.2 Marginal E¤ects for Nonlinear Models Nonlinear Models in Practice

Nonlinear Models in Practice

Several issues arise when the relationship is nonlinear.

Estimation by OLS is possible if the coe¢ cients in the model still
appear linearly

I e.g. E[y jx ] = β1 + β2 ln x is okay as linear in β1 and β2
I e.g. E[y jx ] = exp(β1 + β2x) is not okay as not linear in β1 and β2

Direct interpretation of slope coe¢ cients may not be possible
I use marginal e¤ects.

Prediction of y problematic when y is transformed before regression
I e.g. if E[ln y jx ] = β1 + β2x .

Di¢ cult to choose the appropriate nonlinear model
I when can�t do a scatter plot of several regressors.
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15.3 Quadratic Model and Polynomial Models

15.3 Quadratic Model and Polynomial Models
A quadratic model is the model y = β1 + β2x + β3x

2 + u.
The �gure gives various examples

I top row has β2 < 0 and bottom row has β2 > 0.
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Examples of  Quadratic Model
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15.3 Quadratic Model and Polynomial Models Marginal E¤ects for Quadratic Model

Marginal E¤ects for Quadratic Model

Fitted quadratic model by = b1 + b2x + b3x2
MEx = b2 + 2b3x (using calculus methods).

The average marginal e¤ect is

AME = 1
n ∑n

i=1(b2 + 2b3xi )

= b2 + 2b3 � 1
n ∑n

i=1 xi
= b2 + 2b3x̄ .
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15.3 Quadratic Model and Polynomial Models Quadratic Example: Earnings and Age

Quadratic Example: Earnings and Age

Regress Earnings (y) on Age (x), Agesq (x2), and Education (z),
with heteroskedastic-robust t-statistics in parentheses

by = �98620
(�4.02)

+ 3105
(2.86)

x � 29.66
(�2.38)

x2 + 5740
(8.94)

z , R2 = .1196, n = 872,

Quadratic term is warranted as for x2 we have
jtj = 2.38 > t868;.025 = �1.963.
The turning point for the quadratic is at x = �b2/2b3

I here at Age = 3105/(2� (�29.66)) = 52.3 years.
I earnings on average increase to 52.3 years and then decline.

ME= 3105� 29.66x � 29.66∆x by �nite di¤erence method
ME= 3105� 59.32x using calculus method
AME= 1

n ∑n
i=1(3105� 59.32xi ) = 3105� 59.32x̄ =

3105� 59.32� 43.31 = 536
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15.3 Quadratic Model and Polynomial Models Polynomial Model

Polynomial Model

A polynomial model of degree p includes powers of x up to xp .
The �tted model is

by = b1 + b2x + b3x2 + � � �+ bp+1xp .
This model has up to p � 1 turning points.
Determine polynomial order by progressively adding terms x2, x3, ...

I until additional terms are no longer statistically signi�cant.

By calculus methods the marginal e¤ect is

ME = b2 + 2b3x + 3b4x2 + � � �+ pbp+1xp�1,

which again will vary with the point of evaluation x .
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15.4 Interacted Regressors Interacted Regressors

15.4 Interacted Regressors
Example with x � z an interacted regressor is

y = β1 + β2x + β3z + β4x � z + u.
Estimation is straightforward

I create a variable xz , say, that equals x � z
I run OLS regression of y on an intercept, x , z and xz .
I the �tted model (with xz = x � z) isby = b1 + b2x + b3z + b4xz ,

Interpretation of regressors is more di¢ cult.
The marginal e¤ect (ME) on by of a change in x , holding z constant,
depends on coe¢ cients of both x and xz

MEx =
∆by
∆x

= b2 + b4z .

To test statistical signi�cance of x do joint F -test on variables x and
xz : H0 : β2 = 0, β4 = 0.
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15.4 Interacted Regressors Interactions Example: Earnings, Education and Age

Interactions Example: Earnings, Education and Age

OLS regression of Earnings on Age (x) and Education (z)
I both variables are statistically signi�cant at 5% (t stats in parentheses)

by = �46875
(�4.15)

+ 525
(3.47)

x + 5811
(9.06)

z , R2 = .115, n = 872,

Add AgebyEduc (x � z) as a regressor
I now no regressors are statistically signi�cant at 5%

by = �29089
(�0.94)

+ 127
(0.18)

x + 4515
(1.88)

z + 29.0
(0.52)

x � z , R2 = .115, n = 872,

The marginal e¤ect of one more year of schooling is

MEEd = 4515+ 29� Age.

I So the returns to education increase as one ages.

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.15: Transformed Variables November 2022 15 / 25



15.4 Interacted Regressors Interactions Example: Earnings, Education and Age

Joint Hypothesis tests

Individual coe¢ cients are statistically insigni�cant at 5%

But a joint test on Age (x) and AgebyEduc (x � z)
I a test of H0 : βx = 0, βxz = 0 yields F = 6.49 with p = 0.002
I so age remains highly statistically signi�cant
I similarly F -test for the two education regressors is F = 43.00 with
p = 0.000.

Why the di¤erence between individual and joint tests?

The interaction variable AgebyEduc is
I quite highly correlated with Age (bρ = 0.72)
I quite highly correlated with Education (bρ = 0.64).

When regressors are highly correlated with each other
I individual contributions are measured much less precisely
I here standard errors of Age and Education more than triple from 151
and 641 to 719 with inclusion of variable AgebyEduc.
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15.5 Log-linear and Log-log Models

15.5 Natural Logarithm Transformations

Consider models with ln y and/or ln x .

Chapter 9 gave interpretation of coe¢ cients
I semi-elasticity in log-linear model
I elasticity in log-log model.

Now additionally consider marginal e¤ects MEx = ∆y/∆x .
For log-linear model ln y = b1 + b2x use MEx = b2by

I reason: ∆ ln y/∆x = b2 but ∆ ln y ' ∆y/y
so (∆y/y)/∆x = b2 and on solving ∆y/∆x = b2y

Similarly for log-log model ln y = b1 + b2 ln x use MEx = b2by/x .
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15.5 Log-linear and Log-log Models Log-linear and Log-log Models

Log-linear Model

OLS regression of ln(Earnings) on Age (x) and Education (z)
I both variables are statistically signi�cant at 5% (t stats in parentheses)

dln y = 8.96
(59.63)

+ 0.0078
(3.83)

x + 0.101
(11.68)

z , R2 = .190,

One year of aging, controlling for education, is associated with a 0.78
percent (= 100� 0.0078) increase in earnings.
The marginal e¤ect of aging is 0.0078by

I always positive and increases with age since by " with age.
I simplest to evaluate at ȳ , then MEM of a year of aging is a $440
increase in earnings (= 0.0078� 56369).
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15.5 Log-linear and Log-log Models Log-log Model

Log-log Models

OLS regression of ln(Earnings) on ln(Age) (x) and Education (z)
I both variables are statistically signi�cant at 5% (t stats in parentheses)

dln y = 8.01
(24.23)

+ 0.346
(4.21)

ln x + 0.100
(11.67)

z , R2 = .193,

A one percent increase in age, controlling for education, is associated
with a 0.346 percent increase in earnings.

The marginal e¤ect of aging is 0.346by/x
I always positive and increases with age since by " with age.
I simplest to evaluate at ȳ and x̄ , then MEM of a year of aging is a $450
increase in earnings (= 0.346� 56369/43.41).
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15.6 Prediction from Log-linear and Log-log Models

15.6 Prediction from Log-linear and Log-log Models

Consider log-linear model: dln y = b1 + b2x + b3z .
A naive prediction in level is by = exp(dln y) = exp(b1 + b2x + b3z).
But this underpredicts due to retransformation bias (next page).
Instead if errors were normal and homoskedastic predict y using

ey = exp(s2e /2)� exp(dln y).
Here se is standard error of the regression for the ln y regression.

Example: se = 0.4 (which is large for data on a log scale)
I need to rescale by exp(s2e /2) = 1.215
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15.6 Prediction from Log-linear and Log-log Models

Retransformation Bias Correction

Log-linear population model assumes E[ujx ] = 0 in

ln y = β1 + β2x + u.

Taking the exponential on both sides: y = exp(β1 + β2x + u).

So the conditional mean of y given x is

E[y jx ] = E[exp(β1 + β2x + u)jx ]
= exp(β1 + β2x)� E[exp(u)jx ].

Problem: We need to know E[exp(u)jx ].
I in general E[exp(u)jx ] > 1
I E[exp(u)jx ] = exp(σ2u/2) if ujx � N(0, σ2u)

F i.e. normal homoskedastic errors.

I then E[y jx ] = exp(σ2u/2) exp(β1 + β2x).
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15.6 Prediction from Log-linear and Log-log Models R-squared with Transformed dependent Variable

R-squared with Transformed Dependent Variable

R2 in regress y on x measures the fraction of the variation in y
around ȳ that is explained by the regressors.

R2 in regress g(y) on x instead measures the fraction of the variation
in g(y) around g(y) that is explained by the regressors.

So meaningless to compare R2 across models with di¤erent
transformations of the dependent variable.

For right-skewed data R2 is usually higher in models for ln y rather
than y .

For persistent time series right-skewed data R2 is usually higher in
models for y than for ∆y .
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15.7 Models with a Mix of Regressor Types Dependent Variable in Levels

15.7 Models with a Mix of Regressor Types

Levels example with R2 = .206, n = 872 is

\Earnings
= �356631

(�5.38)
� 14330
(�5.31)

� Gender + 3283
(3.08)

� Age � 31.58
(�2.59)

� Agesq

+5399
(8.85)

� Education+ 9360
(1.07)

�Dself � 291
(�0.10)

�Dgovt

+69964
(4.34)

� Lnhours,

Interpretation controlling for other regressors
I ME of aging is 3283� 63.16� Age
I Self-employed workers on average earn $9,360 more than private sector
workers (the omitted category)

F though this comparison is statistically insigni�cant at 5%

I A 1% change in hours worked is associated with a $699 increase in
earnings.
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15.7 Models with a Mix of Regressor Types Dependent Variable in Natural Logarithms

Dependent Variable in Natural Logarithms
Natural logarithms example with R2 = .206, n = 872 is

\LnEarnings
= 4.459

(6.89)
� 0.193
(�4.88)

� Gender + 0.0560
(3.55)

� Age � 0.000549
(�2.99)

� Agesq

+0.0934
(11.17)

� Education� 0.118
(�1.17)

�Dself + 0.070
(1.53)

�Dgovt

+0.975
(6.88)

� Lnhours

Interpretation controlling for other regressors
I women on average earn 19.3% less than men
I earnings increase with age to 51.0 years (= �.560/(2� (�.000549))
and then decrease

I Self-employed workers on average earn 11.8% less than private sector
workers (the omitted category)

F though this comparison is statistically insigni�cant at 5%
I A 1% change in hours worked is associated with a 0.975% increase in
earnings.
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Some in-class Exercises

Some in-class Exercises

1 For by = 2+ 3x + 4x2 for a dataset with ȳ = 30 and x̄ = 2 give the
marginal e¤ect of a one unit change in x . Hence give the AME.

2 For by = 1+ 2x + 4d + 7d � x for a dataset with ȳ = 22, x̄ = 3 and
d̄ = 0.5 give the marginal e¤ect of a one unit change in x . Hence
give the AME.

3 For model ln y = β1 + β2 + u we obtaindln y = 1+ 2x , n = 100,
se = 0.3. Give an estimate of E[y jx ].

c
 A. Colin Cameron Univ. of Calif. Davis () AED Ch.15: Transformed Variables November 2022 25 / 25


	Chapter 15
	15.1 Example: Earnings, Gender, Education and Type of Worker
	15.2 Marginal Effects for Nonlinear Models
	AME, MEM and MER
	Computation of Marginal Effects
	Nonlinear Models in Practice

	15.3 Quadratic Model and Polynomial Models
	Marginal Effects for Quadratic Model
	Quadratic Example: Earnings and Age
	Polynomial Model

	15.4 Interacted Regressors
	Interacted Regressors
	Interactions Example: Earnings, Education and Age

	15.5 Log-linear and Log-log Models
	Log-linear and Log-log Models
	Log-log Model

	15.6 Prediction from Log-linear and Log-log Models
	R-squared with Transformed dependent Variable

	15.7 Models with a Mix of Regressor Types
	Dependent Variable in Levels
	Dependent Variable in Natural Logarithms

	Some in-class Exercises

