Analysis of Economics Data Chapter 15: Regression with Transformed Variables

> © A. Colin Cameron Univ. of Calif. Davis

> > November 2022

CHAPTER 15: Regression with Transformed Variables

- Regression often involves variables that have been transformed
 - e.g. quadratics, natural logarithm, interactions (products of variables)
 - e.g. $\hat{y}_i = b_1 + b_2 x_{2i} + b_3 x_{3i} + b_3 x_{2i} \times x_{3i}$.
- OLS estimation remains fine if model is still linear in coefficients $b_1, ..., b_k$.
- But interpreting results is more difficult when the model is nonlinear in the underlying variables
 - the marginal effect $\Delta \hat{y} / \Delta x$ is no longer the slope coefficient
 - plus there are different ways to compute $\Delta \hat{y} / \Delta x$
 - ▶ and if y is transformed then prediction of y becomes more difficult.

Outline

- Example: Earnings, Gender, Education and Type of Worker
- Ø Marginal effects for Nonlinear Models
- Quadratic Model and Polynomial Models
- Interacted Regressors
- Log-linear and Log-log models
- Prediction from Log-linear and Log-log Models
- Ø Models with a Mix of Regressor Types

Datasets: EARNINGS_COMPLETE

15.1 Example: Earnings, Gender, Education, Worker Type

- Dataset EARNINGS_COMPLETE
 - ▶ 872 female and male full-time workers aged 25-65 years in 2000.

			Standard		
Variable	Definition	Mean	Deviation	Min	Max
Earnings	Annual earnings in \$	56369	51516	4000	504000
Age	Age in years	43.31	10.68	25	65
Gender	= 1 if female	0.433	0.496	0	1
Education	Years of schooling	13.85	2.88	0	20
d1 or dself	= 1 if self-employed	0.089	0.286	0	1
d2 or dpriv	=1 if private sector employee	0.760	0.427	0	1
d3 or dgovt	=1 if government sector employee	0.149	0.356	0	1
Agesq	Age squared	1989.7	935.7	625	4225
Educbyage	Education times Age	598.8	193.69	0	1260
Hours	Usual hours worked per week	44.34	8.50	35	99
Lnhours	Natural logarithm of Hours	3.78	0.16	3.56	4.60
Lnearnings	Natural logarithm of <i>Earnings</i>	10.69	0.68	8.29	13.13
n	872				

4 / 25

15.2 Marginal Effects for Nonlinear Models

- Examples of nonlinear models
 - Quadratic: $\hat{y} = b_1 + b_2 x + b_3 x^2$
 - Interactions: $\hat{y} = b_1 + b_2 x + b_3 z + b_3 (x \times z)$
 - Natural logarithms: $\ln \hat{y} = b_1 + b_2 x + b_3 z$.
- The marginal effect (ME) on the predicted value of y of a change in a regressor is

$$\mathsf{ME}_{x} = \frac{\Delta \widehat{y}}{\Delta x}.$$

- In nonlinear models we get different results depending on method
 - calculus method: use the derivative $d\hat{y}/dx$ (for very small Δx)
 - finite difference methods: such as $\Delta x = 1$.

Calculus method versus Finite Difference Method

- Plotted curve is $y = 12 2 \times (x 3)^2$
 - calculus method at x = 2: $\frac{dy}{dx} = 12 4x = 4$ at x = 2.
 - finite difference for x = 2 to x = 3: $\Delta y = 12 10 = 2$.

AME, MEM and MER

- Marginal effect $ME_x = \Delta \hat{y} / \Delta x$ varies with the level of x.
 - So what value of x do we evaluate at?
- 1. Average marginal effect (AME): evaluate for each *i* and average

$$\mathsf{AME} = \frac{1}{n} \sum_{i=1}^{n} \mathsf{ME}_{i} = \frac{1}{n} \sum_{i=1}^{n} \frac{\Delta \widehat{y}_{i}}{\Delta x_{i}}$$

• 2. Marginal effect at the mean (MEM): evaluate ME at $x = \bar{x}$

$$\mathsf{MEM} = \mathsf{ME}|_{x=\bar{x}} = \left. \frac{\Delta \widehat{y}}{\Delta x} \right|_{x=\bar{x}}$$

 3. Marginal effect at a representative value (MER): evaluate ME at a representative value of x, say x = x*

$$\mathsf{MER} = \mathsf{ME}|_{x=x^*} = \left. \frac{\Delta \widehat{y}}{\Delta x} \right|_{x=x^*}$$

• Most often use AME, with ME_i evaluated using calculus methods.

Computation of Marginal Effects

- Suppose $ME_x = 2x^2 + 3z^2$ so also depends on z.
- For AME evaluate for each individual and average

•
$$AME_x = \frac{1}{n} \sum_{i=1}^n (2x_i^2 + 3z_i^2).$$

• For the MEM set all variables at their means

•
$$MEM_x = 2\overline{x}^2 + 3\overline{z}^2$$
.

- For MER evaluate at a particular value x^* of x
 - with z taking the values for each individual $MER_x = 2(x^*)^2 + \frac{1}{n} \sum_{i=1}^n 3z_i^2$
 - or additionally specify a particular value z^* of z, so $MER_x = 2(x^*)^2 + 3(z^*)^2$.
- Some statistical packages provide post-estimation commands to calculate AME, MEM and MER
 - these additionally provide standard errors and confidence intervals for these estimates.

Nonlinear Models in Practice

- Several issues arise when the relationship is nonlinear.
- Estimation by OLS is possible if the coefficients in the model still appear linearly
 - e.g. $E[y|x] = \beta_1 + \beta_2 \ln x$ is okay as linear in β_1 and β_2
 - ▶ e.g. $E[y|x] = \exp(\beta_1 + \beta_2 x)$ is not okay as not linear in β_1 and β_2
- Direct interpretation of slope coefficients may not be possible
 - use marginal effects.
- Prediction of y problematic when y is transformed before regression

• e.g. if
$$E[\ln y|x] = \beta_1 + \beta_2 x$$
.

- Difficult to choose the appropriate nonlinear model
 - when can't do a scatter plot of several regressors.

15.3 Quadratic Model and Polynomial Models

- A quadratic model is the model $y = \beta_1 + \beta_2 x + \beta_3 x^2 + u$.
- The figure gives various examples
 - top row has $\beta_2 < 0$ and bottom row has $\beta_2 > 0$.

© A. Colin Cameron Univ. of Calif. Davis

Marginal Effects for Quadratic Model

• Fitted quadratic model $\widehat{y} = b_1 + b_2 x + b_3 x^2$

 $ME_x = b_2 + 2b_3x$ (using calculus methods).

• The average marginal effect is

$$AME = \frac{1}{n} \sum_{i=1}^{n} (b_2 + 2b_3 x_i) = b_2 + 2b_3 \times \frac{1}{n} \sum_{i=1}^{n} x_i = b_2 + 2b_3 \bar{x}.$$

Quadratic Example: Earnings and Age

• Regress *Earnings* (y) on *Age* (x), *Agesq* (x²), and *Education* (z), with heteroskedastic-robust *t*-statistics in parentheses

$$\widehat{y} = -98620 + 3105x - 29.66x^2 + 5740z$$
, $R^2 = .1196$, $n = 872$, $(-4.02) + (2.86) + (-2.38) + (-2.3$

- Quadratic term is warranted as for x^2 we have $|t| = 2.38 > t_{868;.025} = -1.963.$
- The turning point for the quadratic is at $x = -b_2/2b_3$
 - ▶ here at $Age = 3105/(2 \times (-29.66)) = 52.3$ years.
 - earnings on average increase to 52.3 years and then decline.
- ME= $3105 29.66x 29.66\Delta x$ by finite difference method
- ME = 3105 59.32x using calculus method
- AME= $\frac{1}{n} \sum_{i=1}^{n} (3105 59.32x_i) = 3105 59.32\bar{x} = 3105 59.32 \times 43.31 = 536$

E Sac

Polynomial Model

- A polynomial model of degree *p* includes powers of *x* up to *x^p*.
- The fitted model is

$$\widehat{y} = b_1 + b_2 x + b_3 x^2 + \dots + b_{p+1} x^p.$$

- This model has up to p-1 turning points.
- Determine polynomial order by progressively adding terms x^2 , x^3 , ...
 - until additional terms are no longer statistically significant.
- By calculus methods the marginal effect is

$$\mathsf{ME} = b_2 + 2b_3x + 3b_4x^2 + \dots + pb_{p+1}x^{p-1},$$

which again will vary with the point of evaluation x.

15.4 Interacted Regressors

• Example with $x \times z$ an interacted regressor is

$$y = \beta_1 + \beta_2 x + \beta_3 z + \beta_4 x \times z + u.$$

- Estimation is straightforward
 - create a variable xz, say, that equals $x \times z$
 - run OLS regression of y on an intercept, x, z and xz.
 - the fitted model (with $xz = x \times z$) is

$$\widehat{y} = b_1 + b_2 x + b_3 z + b_4 x z,$$

- Interpretation of regressors is more difficult.
- The marginal effect (ME) on \hat{y} of a change in x, holding z constant, depends on coefficients of both x and xz

$$\mathsf{ME}_{x} = \frac{\Delta \widehat{y}}{\Delta x} = b_{2} + b_{4}z.$$

• To test statistical significance of x do joint F-test on variables x and $xz : H_0 : \beta_2 = 0, \beta_4 = 0.$

Interactions Example: Earnings, Education and Age

- OLS regression of *Earnings* on *Age* (x) and *Education* (z)
 - ▶ both variables are statistically significant at 5% (*t* stats in parentheses)

$$\widehat{y} = -46875 + 525 x + 5811 z$$
, $R^2 = .115$, $n = 872$,
 (-4.15) (3.47) (9.06)

- Add AgebyEduc $(x \times z)$ as a regressor
 - now no regressors are statistically significant at 5%

$$\widehat{y} = -29089 + 127_{(-0.94)} x + 4515_{(1.88)} x + 29.0_{(0.52)} x \times z, \quad R^2 = .115, \quad n = 872,$$

• The marginal effect of one more year of schooling is

$$\mathsf{ME}_{Ed} = 4515 + 29 \times Age.$$

So the returns to education increase as one ages.

Joint Hypothesis tests

- ullet Individual coefficients are statistically insignificant at 5%
- But a joint test on Age (x) and AgebyEduc $(x \times z)$
 - a test of H_0 : $\beta_x = 0$, $\beta_{xz} = 0$ yields F = 6.49 with p = 0.002
 - so age remains highly statistically significant
 - ▶ similarly *F*-test for the two education regressors is F = 43.00 with p = 0.000.
- Why the difference between individual and joint tests?
- The interaction variable *AgebyEduc* is
 - quite highly correlated with Age $(\widehat{
 ho}=0.72)$
 - quite highly correlated with *Education* ($\hat{\rho} = 0.64$).
- When regressors are highly correlated with each other
 - individual contributions are measured much less precisely
 - here standard errors of Age and Education more than triple from 151 and 641 to 719 with inclusion of variable AgebyEduc.

15.5 Natural Logarithm Transformations

- Consider models with ln y and/or ln x.
- Chapter 9 gave interpretation of coefficients
 - semi-elasticity in log-linear model
 - elasticity in log-log model.
- Now additionally consider marginal effects $ME_x = \Delta y / \Delta x$.
- For log-linear model ln $y = b_1 + b_2 x$ use ME_x = $b_2 \hat{y}$
 - reason: $\Delta \ln y / \Delta x = b_2$ but $\Delta \ln y \simeq \Delta y / y$ so $(\Delta y/y)/\Delta x = b_2$ and on solving $\Delta y/\Delta x = b_2 y$
- Similarly for log-log model $\ln y = b_1 + b_2 \ln x$ use $ME_x = b_2 \hat{y} / x$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Log-linear Model

- OLS regression of ln(Earnings) on Age (x) and Education (z)
 - both variables are statistically significant at 5% (t stats in parentheses)

$$\widehat{\ln y} = \underset{(59.63)}{8.96} + \underset{(3.83)}{0.0078x} + \underset{(11.68)}{0.101}z, \quad R^2 = .190,$$

- One year of aging, controlling for education, is associated with a 0.78 percent (= 100×0.0078) increase in earnings.
- The marginal effect of aging is $0.0078\hat{y}$
 - always positive and increases with age since $\hat{y} \uparrow$ with age.
 - ▶ simplest to evaluate at \bar{y} , then MEM of a year of aging is a \$440 increase in earnings (= 0.0078×56369).

Log-log Models

- OLS regression of ln(Earnings) on ln(Age)(x) and Education (z)
 - ▶ both variables are statistically significant at 5% (t stats in parentheses)

$$\widehat{\ln y} = \underset{(24.23)}{8.01} + \underset{(4.21)}{0.346} \ln x + \underset{(11.67)}{0.100} z, \quad R^2 = .193,$$

- A one percent increase in age, controlling for education, is associated with a 0.346 percent increase in earnings.
- The marginal effect of aging is $0.346\hat{y}/x$
 - always positive and increases with age since $\hat{y} \uparrow$ with age.
 - simplest to evaluate at ȳ and x̄, then MEM of a year of aging is a \$450 increase in earnings (= 0.346 × 56369/43.41).

15.6 Prediction from Log-linear and Log-log Models

- Consider log-linear model: $\widehat{\ln y} = b_1 + b_2 x + b_3 z$.
- A naive prediction in level is $\hat{y} = \exp(\widehat{\ln y}) = \exp(b_1 + b_2 x + b_3 z)$.
- But this underpredicts due to retransformation bias (next page).
- Instead if errors were normal and homoskedastic predict y using

$$\widetilde{y} = \exp(s_e^2/2) \times \exp(\widehat{\ln y}).$$

- Here s_e is standard error of the regression for the ln y regression.
- Example: $s_e = 0.4$ (which is large for data on a log scale)
 - need to rescale by $\exp(s_e^2/2) = 1.215$

Retransformation Bias Correction

• Log-linear population model assumes $\mathsf{E}[u|x] = 0$ in

$$\ln y = \beta_1 + \beta_2 x + u.$$

- Taking the exponential on both sides: $y = \exp(\beta_1 + \beta_2 x + u)$.
- So the conditional mean of y given x is

$$\begin{split} \mathsf{E}[y|x] &= \mathsf{E}[\exp(\beta_1 + \beta_2 x + u)|x] \\ &= \exp(\beta_1 + \beta_2 x) \times \mathsf{E}[\exp(u)|x]. \end{split}$$

• Problem: We need to know E[exp(u)|x].

• in general
$$E[\exp(u)|x] > 1$$

• $E[\exp(u)|x] = \exp(\sigma_u^2/2)$ if $u|x \sim N(0, \sigma_u^2)$

★ i.e. normal homoskedastic errors.

• then $E[y|x] = \exp(\sigma_u^2/2) \exp(\beta_1 + \beta_2 x)$.

R-squared with Transformed Dependent Variable

- R^2 in regress y on x measures the fraction of the variation in y around \bar{y} that is explained by the regressors.
- R² in regress g(y) on x instead measures the fraction of the variation in g(y) around g(y) that is explained by the regressors.
- So **meaningless** to compare R^2 across models with different transformations of the dependent variable.
- For right-skewed data R^2 is usually higher in models for $\ln y$ rather than y.
- For persistent time series right-skewed data R² is usually higher in models for y than for Δy.

15.7 Models with a Mix of Regressor Types

• Levels example with $R^2 = .206$, n = 872 is

$\widehat{Earnings} = -356631 - 14330 \times Gender + 3283 \times Age - 31.58 \times Agesq$ $+5399 \times Education + 9360 \times Dself - 291 (-0.10) \times Dgovt$ $+69964 \times Lnhours,$ (4.34)

- Interpretation controlling for other regressors
 - ME of aging is $3283 63.16 \times Age$
 - Self-employed workers on average earn \$9,360 more than private sector workers (the omitted category)

 $\star\,$ though this comparison is statistically insignificant at 5%

► A 1% change in hours worked is associated with a \$699 increase in earnings.

Dependent Variable in Natural Logarithms

• Natural logarithms example with $R^2 = .206$, n = 872 is

- $= \begin{array}{l} 4.459 \underbrace{0.193}_{(-4.88)} \times \textit{Gender} + \underbrace{0.0560}_{(3.55)} \times \textit{Age} \underbrace{0.000549}_{(-2.99)} \times \textit{Agesq} \\ + \underbrace{0.0934}_{(11.17)} \times \textit{Education} \underbrace{0.118}_{(-1.17)} \times \textit{Dself} + \underbrace{0.070}_{(1.53)} \times \textit{Dgovt} \\ + \underbrace{0.975}_{(6.88)} \times \textit{Lnhours} \end{array}$
- Interpretation controlling for other regressors
 - women on average earn 19.3% less than men
 - earnings increase with age to 51.0 years $(= -.560/(2 \times (-.000549)))$ and then decrease
 - Self-employed workers on average earn 11.8% less than private sector workers (the omitted category)

 \star though this comparison is statistically insignificant at 5%

 A 1% change in hours worked is associated with a 0.975% increase in earnings.

Some in-class Exercises

- For $\hat{y} = 2 + 3x + 4x^2$ for a dataset with $\bar{y} = 30$ and $\bar{x} = 2$ give the marginal effect of a one unit change in x. Hence give the AME.
- For $\hat{y} = 1 + 2x + 4d + 7d \times x$ for a dataset with $\bar{y} = 22$, $\bar{x} = 3$ and $\bar{d} = 0.5$ give the marginal effect of a one unit change in x. Hence give the AME.
- So For model $\ln y = \beta_1 + \beta_2 + u$ we obtain $\widehat{\ln y} = 1 + 2x$, n = 100, $s_e = 0.3$. Give an estimate of E[y|x].