Panel data and fixed effect estimator

A. Colin Cameron Univ. of California, Davis

These slides are part of the set of slides A. Colin Cameron, Introduction to Causal Methods https://cameron.econ.ucdavis.edu/causal/

March 2023

• = • •

Introduction

- These slides give an introductory example of the fixed effects estimator for panel data
 - the fixed effects estimator is a method for causal inference
- Here it is applied to panel data
 - ★ it also applies more generally to grouped data with group-specific effects
- Fixed effects causal inference relies crucially on the nontestable assumption that endogenous regressors are correlated only with a time-invariant (or group-invariant) component of the data.

- Separately the Stata file panel.do implements these methods
 - using dataset AED_NBA.DTA
- Data are from chapter 13.7 of A. Colin Cameron (2022) Analysis of Economics Data: An Introduction to Econometrics https://cameron.econ.ucdavis.edu/.
- Data originally from Edwin Bang (2012), "Collective Bargaining Agreements, Star Players, and Inequality in the NBA", Undergraduate Honors thesis, Dept. of Economics, U.C. Davis.

Outline

Introduction

- Panel data estimators
- Second Second
- 4 Results
- Further Details
- 6 References

★ ∃ >

Panel data methods

- Panel or longitudinal data are data where the same individuals are observed at several points in time.
- The standard microeconometrics models and estimators have
 - data on many individuals
 - for at least two time periods (a short panel)
 - time observations that are equally spaced e.g. year or month.
- For individual *i* in time period *t* the pooled model sets
 - $y_{it} = \beta_1 + \beta_2 x_{2it} + \dots + \beta_k x_{kit} + u_{it}$, $i = 1, \dots, n, t = 1, \dots, T$
 - the regressors can include controls for time trends.
- Statistical inference needs to use cluster-robust standard errors to control for likely time series correlation in the error term
 - cluster on individual assuming independence across individuals
 - cluster on group assuming independence across groups of individuals.

イロト イヨト イヨト イヨト

Fixed effects estimator

- The model is $y_{it} = \beta_1 + \beta_2 x_{2it} + \dots + \beta_k x_{kit} + u_{it}$.
- OLS is inconsistent if regressors are correlated with the error u_{it} .
- Fixed effects assume the regressors are correlated only with a part of the error that is constant over time
 - the crucial nontestable assumption.
- Assume that $u_{it} = \alpha_i + \varepsilon_{it}$ where
 - α_i is an individual-specific effect that may be correlated with regressors
 - \star e.g. in an earnings on schooling regression α_i may be unobserved ability
 - ε_{it} is an idiosyncratic part of the error that is uncorrelated with regressors.
- Define the individual-specific averages $\bar{y}_i = \frac{1}{T} \sum_{t=1}^{T} y_{it}$, \bar{x}_{2i} , ..., \bar{x}_{ki} and $\bar{\varepsilon}_i$ to be time averages for each individual.
- The fixed effects (or within) estimator is the OLS estimation in

$$(y_{it} - \bar{y}_i) = \beta_2(x_{2it} - \bar{x}_{2i}) + \dots + \beta_k(x_{kit} - \bar{x}_{ki}) + \text{ error.}$$

Fixed effects estimator (continued)

• Proof: manipulation gives the within model or within model

$$y_{it} = \beta_1 + \beta_2 x_{2it} + \dots + \beta_k x_{kit} + \alpha_i + \varepsilon_{it}$$

$$\bar{y}_i = \beta_1 + \beta_2 \bar{x}_{2i} + \dots + \beta_k \bar{x}_{ki} + \alpha_i + \bar{\varepsilon}_i$$

$$(y_{it} - \bar{y}_i) = \beta_2 (x_{2it} - \bar{x}_{2i}) + \dots + \beta_k (x_{kit} - \bar{x}_{ki}) + (\varepsilon_{it} - \bar{\varepsilon}_i)$$

- Consistent estimates of $\beta_2, ..., \beta_k$ are obtained as the part of the error (α_i) that was correlated with regressors has dropped
 - this relies on the nontestable assumption that only time-invariant part of the error is correlated with regressors.
- The fixed effects estimator can also be obtained by OLS estimation of y_{it} on a set of indicator variables for each individual and on $x_{2it}, ..., x_{kit}$.

(人間) トイヨト イヨト

Example: Wins and revenue for NBA teams

- What is the causal effect of winning last season on revenue this season
 - where need to control for some teams always having high revenue and winning more.
- Some NBA teams are on average always better than others.
- Dataset NBA has annual data on 29 teams for the 10 seasons 2001-02 to 2010-11
 - view as short panel dataset (T fixed and n large).

Data summary

• Variable description and summary statistics

Variable name	Storage type	Display format	Value label	Variable label
revenue	float	%8.0g		Team revenue in millions of 1999 \$
lnrevenue	float	%9.0g		Natural logarithm of team revenue
wins	byte	%8.0g		Wins in previous season including playoff game
season	byte	%8.0g		1 to 10
teamid	byte	%8.0g		1 to 29

. summarize revenue lnrevenue wins season teamid

Variable	Obs	Mean	Std. dev.	Min	Max
revenue	286	95.71404	24.44207	58.49582	187.7212
lnrevenue	286	4.532293	.2359855	4.068955	5.234958
wins	286	41.03497	12.43758	9	67
season	286	5.541958	2.872126	1	10
teamid	286	14.86014	8.354935	1	29

→ Ξ →

Results

Results

- Fixed effects estimate is that an extra win is associated with a 0.452% increase in revenue.
 - . * Pooled OLS

. regress lnrev wins season, vce(cluster teamid) noheader

(Std. err. adjusted for 29 clusters in teamid)

lnrevenue	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
wins	.0068132	.0018965	3.59	0.001	.0029284	.0106981
season	.0182414	.0033079	5.51	0.000	.0114655	.0250172
_cons	4.151619	.0965789	42.99	0.000	3.953786	4.349452

. * Fixed effects

. regress lnrev wins season i.teamid, vce(cluster teamid) noheader

(Std. err. adjusted for 29 clusters in teamid)

lnrevenue	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
wins	.0045238	.0008423	5.37	0.000	.0027985	.0062492
season	.0190451	.0035645	5.34	0.000	.0117436	.0263467

イロト イポト イヨト イヨト 二日

Further Details for grouped data

- The fixed effects estimator can also be applied to grouped data with model observations per group.
- For example, suppose we have data on many villages and on several individuals within each village.
- Then for individual *i* in group *g*

$$y_{gi} = \beta_1 + \beta_2 x_{2gi} + \dots + \beta_k x_{kgi} + \alpha_g + \varepsilon_{gi}$$

- The fixed effects model assumes $u_{gi} = \alpha_g + \varepsilon_{gi}$ where only α_g is correlated with regressors.
- The cluster-specific fixed effects estimator is OLS in

$$y_{gi} - ar{y}_g = eta_2(x_{2gi} - ar{x}_{2g}) + \dots + eta_k(x_{kgi} - ar{x}_{kg}) + ext{ error}$$

- Here \bar{y}_g , \bar{x}_{2g} ,..., \bar{x}_{kg} are averages across individuals in group g.
- Standard errors should cluster on group.
- Only parameters of regressors that vary within group can be estimated, as otherwise e.g. $x_{2gi} \bar{x}_{2g} = 0$.

Further Details for panel data

- Often fixed effects estimates are much less precise as only within variation is used.
- For the fixed effects estimator, parameters of regressors that do not vary over time for a given individual cannot be estimated, since then $x_{it} = \bar{x}_i$ so $x_{it} \bar{x}_i = 0$ for all t = 1, ..., T.
- An alternative (noncausal) estimator is the random effects estimator.
- The pooled model sets the model parameters to be the same for each individual and each time period
 - richer models can relax this.
- This model is a static model
 - richer dynamic models can be estimated such as

 $y_{it} = \beta_1 + \beta_2 y_{i,t-1} + \cdots$

- but then the standard fixed effects estimator is inconsistent.
- In macroeconomics it is common to have *n* small while $T \rightarrow \infty$.

Image: Image:

References for panel data

- Basic fixed and random effects estimation is presented in many texts.
- A. Colin Cameron (2020), Analysis of Economics Data: An Introduction to Econometrics, chapter 17.2-17.3. https://cameron.econ.ucdavis.edu/aed/.
- Cunningham, Scott (2021), Causal Inference: The MixTape, Yale UP, chapter 8.
- A. Colin Cameron and Pravin K. Trivedi (2022), Microeconometrics using Stata: Volume 2, Second Edition, Stata Press, chapter 8.
- Joshua D. Angrist and Jörn-Steffen Pischke (2009), Mostly Harmless
 Econometrics: An Empiricist's Companion, Princeton University Press, chapter 5.
- A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications, Cambridge University Press, chapter 21.
- Jeffrey M. Wooldridge, (2010), Econometric Analysis of Cross Section and Panel Data, Second Edition, MIT Press, chapter 10.
- Andrew Gelman, Jennifer Hill and Aki Vehtari (2022), Regression and Other Stories, Cambridge University Press, chapter 21.1-21.2.

・ロン ・四と ・ヨン ・ヨン