Regression Discontinuity Design

A. Colin Cameron Univ. of California, Davis

These slides are part of the set of slides A. Colin Cameron, Introduction to Causal Methods https://cameron.econ.ucdavis.edu/causal/

March 2023

(3)

Introduction

- These slides give an introductory example of regression discontinuity design (RDD)
 - RDD is a method for causal inference
 - it can be applied when treatment occurs when a variable that determines in part the outcome crosses a threshold
 - it lends itself to graphical analysis.
- RDD relies on the assumption that there is no manipulation at the threshold
 - and estimation varies with how the outcome is modeled either side of the threshold.

- Separately the Stata file rdd.do implements these methods
 - using dataset AED_INCUMBENCY.DTA
- The data are from chapter 13.7 of A. Colin Cameron (2022) Analysis of Economics Data: An Introduction to Econometrics https://cameron.econ.ucdavis.edu/.
 - and in more detail in A. Colin Cameron and Pravin K. Trivedi (2022) Microeconometrics using Stata: Volume 2, chapter 25.7.
- Data are originally from Sebastian Calonico, Matias Cattaneo, Max Farrell, and Rocío Titiunik (2017), "Rdrobust: Software for Regression-discontinuity Designs," *The Stata Journal*.

• • = • • = •

Outline

- Introduction
- Regression Discontinuity Design
- Searching Example: Gains to Political Incumbency
- 4 Results
- Further Details
- 6 References

< ∃ > <

Regression Discontinuity Design

- A threshold variable (denoted s) determines treatment status
 - e.g. admission into treatment is based on a score denoted s
 - with scores above 100, say, leading to treatment (d = 1).
- A simple RDD estimate compares the average value of outcome variable *y* for individuals on either side of the threshold.
- Complication: usually y itself varies with s (called a running variable).
- Suppose that $y = \beta_1 + \beta_2 s + u$ without treatment
 - then a simple RDD estimate of ATET is $\widehat{\gamma}$ from OLS of

$$\star \ y_i = \beta_1 + \gamma d_i + \beta_2 s_i + u_i.$$

- In practice more flexible models are used
 - e.g. different linear or quadratic trends on either side of the threshold

*
$$y_i = \beta_1 + \gamma d_i + \beta_2 d_i \times s_i + \beta_3 d_i \times s_i^2 + \beta_4 (1 - d_i) \times s_i + \beta_5 (1 - d_i) \times s_i^2 + u_i.$$

(人間) システン イラン

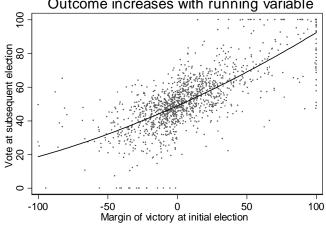
Gains to Political Incumbency

- Does being an incumbent on its own cause an increase the probability of winning the next election?
 - compare impact of just losing and just winning the previous election.
- Data on 1,390 U.S. Senate seat elections from 1914 to 2010.
- Running variable s = margin = Democratic party's margin of victory in a Senate election
- Outcome variable y = vote = Democratic party's vote share in the subsequent Senate election (usually six years later).
- Cutoff variable d = 1 if margin > 0 (so incumbent)

Variable	Obs	Mean	Std. dev.	Min	Max
margin	1,390	7.171159	34.32488	-100	100
vote	1,297	52.66627	18.12219	0	100
win	1,390	.5395683	.4986113	0	1
			<		<

Vote (y) increases with margin (s)

• The running variable has an effect on the outcome.

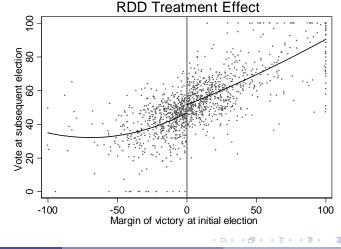


Outcome increases with running variable

Results

Graphical analysis with quadratic on each side

- Fit separate quadratics either side of d = 1 (margin > 0)
 - eyeballing suggests effect is around 5%.



Regression estimate with quadratic on each side

• Fit separate quadratics either side of d = 1 (margin > 0)

- ▶ the estimated effect is a 4.9% boost if win previous election
 - . * Regression analysis quadratic on each side
 - . generate winmarg = win*margin
 - . generate marginsq = margin²
 - . generate winmargsq = win*marginsq

. regress vote win margin marginsq winmarg winmargsq, vce(robust) noheader

vote	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
win	4.934817	1.128685	4.37	0.000	2.72056	7.149074
margin	.4206294	.07891	5.33	0.000	.2658234	.5754353
marginsq	.0030298	.0012332	2.46	0.014	.0006105	.0054492
winmarg	094709	.0973555	-0.97	0.331	2857014	.0962833
winmargsq	0024027	.0013705	-1.75	0.080	0050913	.000286
_cons	46.73955	.842152	55.50	0.000	45.08742	48.39169

(日) (周) (三) (三)

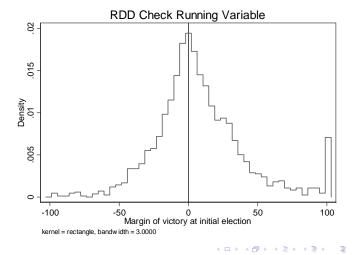
Further Details

- We could restrict analysis to close to the cutoff of zero
 - e.g. to margin between -25 and 25.
- Better graph replaces scatterplot of individual values with a scatterplot of bin averages of vote with, say, 20 bins either side.
- More sophisticated analysis uses local polynomials either side
 - ▶ use Stata user-written program rdrobust (used in MUS2 chapter 25.7).
- Fuzzy RD is a generalization that relaxes the assumption that all below the cutoff are untreated and all above the cutoff are treated.
- In some cases there can be manipulation of the running variable around the cutoff (in which case RDD estimates are invalid)
 - e.g. suppose students fail if course score is less than 50
 - $\star\,$ if teachers are reluctant to fail then expect a heaping just above 50
 - use a histogram or kernel density to visually check this
 - example is next.

(日) (周) (三) (三)

Check no manipulation of running variable

- We do not expect manipulation in this example
 - and indeed see no heaping around margin = 0.



A. Colin Cameron Univ. of California, Davis

References on RDD

- D. S. Lee and T. Lemieux (2010), "Regression discontinuity designs in economics," *Journal of Economic Literature*, 48, pages 281–355.
- These books are given in approximate order of increasing difficulty.
- A. Colin Cameron (2022), Analysis of Economics Data: An Introduction to Econometrics, chapters 13.7 and 17.5.
- Joshua D. Angrist and Jörn-Steffen Pischke (2015), Mastering Metrics, Princeton University Press, chapter 4.
- Cunningham, Scott (2021), Causal Inference: The MixTape, Yale UP, chapter 9.
- A. Colin Cameron and Pravin K. Trivedi (2022), Microeconometrics using Stata: Volume 2, Second Edition, Stata Press, chapter 25.7.
- Joshua D. Angrist and Jörn-Steffen Pischke (2009), Mostly Harmless
 Econometrics: An Empiricist's Companion, Princeton University Press, chapter 6.
- A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications, Cambridge University Press, chapter 25.6.
- Wooldridge, Jeffrey M. (2010), Econometric Analysis of Cross Section and Panel Data, Second Edition, MIT Press, chapter 21.5.

References on RDD by non-economists

- These books by non-economists are similar to *Mastering Metrics* in accessibility.
- Stephen L. Morgan and Christopher Winship (2015), Counterfactuals and Causal Inference: Methods and Principles for Social Research, Second edition, Cambridge University Press, chapter 11.2.
- Richard J. Murnane and John B. Willett (2010), Methods Matter: Improving Causal Inference in Educational and Social Science Research, Oxford University Press, chapter 9.
- Andrew Gelman, Jennifer Hill and Aki Vehtari (2022), Regression and Other Stories, Cambridge University Press, chapter 21.3.