
Colin Cameron: Brief Asymptotic Theory for
240A

For 240A we do not go in to great detail. Key OLS results are in Section
1 and 4. The theorems cited in sections 2 and 3 are those from Appendix A of
Cameron and Trivedi (2005), Microeconometrics: Methods and Applications.

1. A Roadmap for the OLS Estimator

1.1. Estimator and Model Assumptions

Consider the OLS estimator b� = �PN
i=1 x

2
i

��1PN
i=1 xiyi, where there is just one

regressor and no intercept. We want to �nd the properties of b� as sample size
N !1.
First, we need to make assumptions about the data generating process

(dgp). We assume data are independent over i, the model is correctly speci�ed
and the error is well behaved:

yi = �xi + ui

uijxi � [0; �2], not necessarily normal.

Then E[b�] = � and V[b�] = �2 �PN
i=1 x

2
i

��1
for any N .

1.2. Consistency of b�
Intuitively b� collapses on its mean of � as N ! 1, since V[b�] ! 0 as N ! 1.
The formal term is that b� converges in probability to �, or that plim b� = �,
or that b� p! �. We say that b� is consistent for �.
The usual method of proof is not this simple as our toolkit works separately

on each average, and then combines results. Given the dgp, b� can be written as
b� = � + 1

N

PN
i=1 xiui

1
N

PN
i=1 x

2
i

:

The numerator can be shown to go to zero, by a law of large numbers, while
the denominator goes to something nonzero. It follows that the ratio goes to zero.



Formally:

b� p! � +
plim 1

N

PN
i=1 xiui

plim 1
N

PN
i=1 x

2
i

= � +
0

plim 1
N

PN
i=1 x

2
i

= �:

1.3. Asymptotic Normality of b�
Intuitively, if a central limit theorem can be applied, thenb� a� N [E[b�], V[b�]] a� N [�, �2(PN

i=1 x
2
i )
�1];

where a� means is �asymptotically distributed as�.
Again our toolkit works separately on each average, and then combines re-

sults. The method is to rescale by
p
N , to get something with nondegenerate

distribution, and

p
N(b� � �) =

1p
N

PN
i=1 xiui

1
N

PN
i=1 x

2
i

d!
N
h
0; �2

�
plim 1

N

PN
i=1 x

2
i

�i
plim 1

N

PN
i=1 x

2
i

d! N
"
0; �2

�
plim

1

N

PN
i=1 x

2
i

��1#
:

The key component is that 1p
N

PN
i=1 xiui has a normal distribution as N ! 1,

by a central limit theorem.
Given this theoretical result we convert from

p
N(b� � �) to b� and drop the

plim, giving b� a� N [�, �2(
PN

i=1 x
2
i )
�1]:

2. Consistency

The keys are (1) convergence in probability; (2) law of large numbers for an
average; (3) combining pieces.

2.1. Convergence in Probability

Consider the limit behavior of a sequence of random variables bN as N !1.
This is a stochastic extension of a sequence of real numbers, such as aN = 2 +
(3=N).
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Examples include: (1) bN is an estimator, say b�; (2) bN is a component of an
estimator, such as N�1P

i xiui; (3) bN is a test statistic.
Due to sampling randomness we can never be certain that a random sequence

bN , such as an estimator b�N , will be within a given small distance of its limit, even
if the sample is in�nitely large. But we can be almost certain. Di¤erent ways of
expressing this almost certainty correspond to di¤erent types of convergence of a
sequence of random variables to a limit. The one most used in econometrics is
convergence in probability.
Recall that a sequence of nonstochastic real numbers faNg converges to a if

for any " > 0, there exists N� = N�(") such that for all N > N�,

jaN � aj < ":

e.g. if aN = 2+3=N; then the limit a = 2 since jaN�aj = j2+3=N�2j = j3=N j < "
for all N > N� = 3=":
For a sequence of r.v.�s we cannot be certain that jbN�bj < ", even for large N ,

due to the randomness. Instead, we require that the probability of being within
" is arbitrarily close to one.
Thus fbNg converges in probability to b if

lim
N!1

Pr[jbN � bj < "] = 1;

for any " > 0. A more formal de�nition is the following.

De�nition A1: (Convergence in Probability) A sequence of random variables
fbNg converges in probability to b if for any " > 0 and � > 0, there exists
N� = N�("; �) such that for all N > N�,

Pr[jbN � bj < "] > 1� �:

We write plim bN = b, where plim is short-hand for probability limit, or
bN

p! b. The limit b may be a constant or a random variable. The usual de�nition
of convergence for a sequence of real variables is a special case of A1.

For vector random variables we can apply the theory for each element of
bN . [Alternatively replace jbN�bj by the scalar (bN�b)0(bN�b) = (b1N�b1)2+
� � �+ (bKN � bK)2 or by its square root jjbN � bjj.]

Now consider fbNg to be a sequence of parameter estimates b�.
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De�nition A2: (Consistency) An estimator b� is consistent for �0 if
plim b� = �0:

Unbiasedness ; consistency. Unbiasedness states E[b�] = �0. Unbiasedness
permits variability around �0 that need not disappear as the sample size goes to
in�nity.
Consistency ; unbiasedness. e.g. add 1=N to an unbiased and consistent

estimator - now biased but still consistent.

A useful property of plim is that it can apply to transformations of random
variables.

Theorem A3: (Probability Limit Continuity). Let bN be a �nite-dimensional
vector of random variables, and g(�) be a real-valued function continuous at a
constant vector point b. Then

bN
p! b) g(bN)

p! g(b):

This theorem is often referred to as Slutsky�s Theorem. We instead call Theo-
rem A12 Slutsky�s theorem.

Theorem A3 is one of the major reasons for the prevalence of asymptotic results
versus �nite sample results in econometrics. It states a very convenient property
that does not hold for expectations.
For example, plim(aN ; bN) = (a; b) implies plim(aNbN) = ab, whereas E[aNbN ]

generally di¤ers from E[a]E[b].
Similarly plim[aN=bN ] = a=b provided b 6= 0.
There are several ways to establish convergence in probability. The brute

force method uses De�nition A1, this is rarely done. It is often easier to establish
alternative modes of convergence, notably convergence in mean square or use of
Chebychev�s inequality, which in turn imply convergence in probability. But it is
usually easiest to use a law of large numbers.

2.2. Laws of Large Numbers

Laws of large numbers are theorems for convergence in probability (or almost
surely) in the special case where the sequence fbNg is a sample average, i.e.
bN = �XN where

�XN =
1

N

NX
i=1

Xi:
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Note that Xi here is general notation for a random variable, and in the regression
context does not necessarily denote the regressor variables. For exampleXi = xiui.

De�nition A7: (Law of Large Numbers) A weak law of large numbers (LLN)
speci�es conditions on the individual terms Xi in �XN under which

( �XN � E[ �XN ])
p! 0:

For a strong law of large numbers the convergence is instead almost surely.

If a LLN can be applied then

plim �XN = limE[ �XN ] in general
= limN�1PN

i=1 E[Xi] if Xi independent over i
= � if Xi iid.

The simplest laws of large numbers assume that Xi is iid.

Theorem A8: (Kolmogorov LLN ) Let fXig be iid (independent and identically
distributed). If and only if E[Xi] = � exists and E[jXij] <1, then ( �XN ��)

as! 0.

The Kolmogorov LLN gives almost sure convergence. Usually convergence in
probability is enough and we can use the weaker Khinchine�s Theorem.

Theorem A8b: (Khinchine�s Theorem) Let fXig be iid (independent and iden-
tically distributed). If and only if E[Xi] = � exists, then ( �XN � �)

p! 0.

There are other laws of large numbers. In particular, if Xi are independent
but not identically distributed we can use the Markov LLN.

2.3. Consistency of OLS Estimator

Obtain the probability limit of b� = � + [ 1
N

PN
i=1 xiui]=[

1
N

PN
i=1 x

2
i ], under simple

random sampling with iid errors. Assume xi iid with mean �x and ui iid with
mean 0.
As xiui are iid, apply Khinchine�s Theorem yielding N�1P

i xiui
p! E[xu] =

E[x]�E[u] = 0.
As x2i are iid, apply Khinchine�s Theorem yielding N�1P

i x
2
i

p! E[x2] which
we assume exists.
By Theorem A3 (Probability Limit Continuity) plim[aN=bN ] = a=b if b 6= 0.

Then

plim b� = � + plim 1
N

PN
i=1 xiui

plim 1
N

PN
i=1 x

2
i

= � +
0

E[x2]
= �:
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3. Asymptotic Normality

The keys are (1) convergence in distribution; (2) central limit theorem for an
average; (3) combining pieces.
Given consistency, the estimator b� has a degenerate distribution that collapses

on �0 as N !1. So cannot do statistical inference. [Indeed there is no reason to
do it if N !1.] Need to magnify or rescale b� to obtain a random variable with
nondegenerate distribution as N !1.

3.1. Convergence in Distribution

Often the appropriate scale factor is
p
N , so consider bN =

p
N(b� � �0). bN has

an extremely complicated cumulative distribution function (cdf) FN . But like any
other function FN it may have a limit function, where convergence is in the usual
(nonstochastic) mathematical sense.

De�nition A10: (Convergence in Distribution) A sequence of random variables
fbNg is said to converge in distribution to a random variable b if

lim
N!1

FN = F;

at every continuity point of F , where FN is the distribution of bN , F is the
distribution of b, and convergence is in the usual mathematical sense.

We write bN
d! b, and call F the limit distribution of fbNg.

bN
p! b implies bN

d! b.
In general, the reverse is not true. But if b is a constant then bN

d! b implies
bN

p! b.

To extend limit distribution to vector random variables simply de�ne FN
and F to be the respective cdf�s of vectors bN and b.

A useful property of convergence in distribution is that it can apply to trans-
formations of random variables.

Theorem A11: (Limit Distribution Continuity). Let bN be a �nite-dimensional
vector of random variables, and g(�) be a continuous real-valued function. Then

bN
d! b) g(bN)

d! g(b): (3.1)
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This result is also called the Continuous Mapping Theorem.

Theorem A12: (Slutsky�s Theorem) If aN
d! a and bN

p! b, where a is a random
variable and b is a constant, then

(i) aN + bN
d! a+ b

(ii) aNbN
d! ab

(iii) aN=bN
d! a=b, provided Pr[b = 0] = 0:

(3.2)

Theorem A12 (also called Cramer�s Theorem) permits one to separately �nd
the limit distribution of aN and the probability limit of bN , rather than having
to consider the joint behavior of aN and bN . Result (ii) is especially useful and is
sometimes called the Product Rule.

3.2. Central Limit Theorems

Central limit theorems give convergence in distribution when the sequence
fbNg is a sample average. A CLT is much easier way to get the plim than brute
force use of De�nition A10.
By a LLN �XN has a degenerate distribution as it converges to a constant,

limE[ �XN ]. So scale ( �XN�E[ �XN ]) by its standard deviation to construct a random
variable with unit variance that will have a nondegenerate distribution.

De�nition A13: (Central Limit Theorem) Let

ZN =
�XN � E[ �XN ]p

V[ �XN ]
;

where �XN is a sample average. A central limit theorem (CLT) speci�es the
conditions on the individual terms Xi in �XN under which

ZN
d! N [0; 1];

i.e. ZN converges in distribution to a standard normal random variable.

Note that

ZN = ( �XN � E[ �XN ])=
p
V[ �XN ] in general

=
PN

i=1 (Xi � E[Xi])=
qPN

i=1V[Xi] if Xi independent over i

=
p
N( �XN � �)=� if Xi iid.

7



If �XN satis�es a central limit theorem, then so too does h(N) �XN for functions
h(�) such as h(N) =

p
N , since

ZN =
h(N) �XN � E[h(N) �XN ]p

V[h(N) �XN ]
:

Often we apply the CLT to the normalization
p
N �XN = N�1=2PN

i=1Xi, since
V[
p
N �XN ] is �nite.

The simplest central limit theorem is the following.

Theorem A14: (Lindeberg-Levy CLT ) Let fXig be iid with E[Xi] = � and

V[Xi] = �
2. Then ZN =

p
N( �XN � �)=�

d! N [0; 1].

Lindberg-Levy is the CLT in introductory statistics. For the iid case the LLN
required � exists, while CLT also requires �2 exists.
There are other central limit theorems. In particular, if Xi are independent

but not identically distributed we can use the Liapounov CLT.

3.3. Limit Distribution of OLS Estimator

Obtain the limit distribution of
p
N(b� � �) = [ 1p

N

PN
i=1 xiui]=[

1
N

PN
i=1 x

2
i ], under

simple random sampling with iid errors. Assume xi iid with mean �x and second
moment E[x2], and assume ui iid with mean 0 and variance �2.
Then xiui are iid, with mean E[xu] =E[x]�E[u] = 0 and variance V[xu] =

E[(xu)2]� (E[xu])2 =E[x2u2]� 0 = E[x2]E[u2] = �2E[x2]. Apply Lindeberg-Levy
CLT yielding

p
N

 
N�1PN

i=1 xiui � 0p
�2E[x2]

!
=

1p
N

PN
i=1 xiuip

�2E[x2]
d! N [0; 1]:

Using Slutsky�s theorem that aN � bN
d! a � b (for aN

d! a and bN
p! b), this

implies that

1p
N

XN

i=1
xiui =

1p
N

PN
i=1 xiuip

�2E[x2]
�
p
�2E[x2] d! N [0; 1]�

p
�2E[x2] d! N [0; �2E[x2]]:
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Then using Slutsky�s theorem that aN=bN
d! a=b (for aN

d! a and bN
p! b)

p
N(b� � �) =

1p
N

PN
i=1 xiui

1
N

PN
i=1 x

2
i

d! N [0; �2E[x2]]

plim 1
N

PN
i=1 x

2
i

d! N [0; �2E[x2]]
E[x2]

d! N
h
0; �2

�
E[x2]

��1i
;

where we use result from consistency proof that plimN�1PN
i=1 x

2
i =E[x

2].

3.4. Asymptotic Distribution of OLS Estimator

From consistency we have that b� has a degenerate distribution with all mass at �,
while

p
N(b� � �) has a limit normal distribution. For formal asymptotic theory,

such as deriving hypothesis tests, we work with this limit distribution. But for
exposition it is convenient to think of the distribution of b� rather thanpN(b���).
We do this by introducing the arti�ce of "asymptotic distribution".
Speci�cally we consider N large but not in�nite, and drop the probability limit

in the preceding result, so that

p
N(b� � �) � N "0; �2� 1

N

XN

i=1
x2i

��1#
:

It follows that the asymptotic distribution of b� is
b� a� N

�
�; �2

�XN

i=1
x2i

��1�
:

Note that this is exactly the same result as we would have got if yi = �xi + ui
with ui � N [0; �2]:

4. OLS Estimator with Matrix Algebra

Now consider b� = (X0X)�1X0y with y = X� + u, so

b� = � + (X0X)�1X0u:

Note that the k� k matrix X0X =
P

i xix
0
i is a sum, where xi is a k� 1 vector of

regressors for the ith observation. Dividing by N gives an average.
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4.1. Multivariate CLT

Now we need to work with vectors. Two useful results follow.

De�nition A16a: (Multivariate Central Limit Theorem) Let �N = E[�XN ]
and VN = V[�XN ]. A multivariate central limit theorem (CLT) speci�es the
conditions on the individual terms Xi in �XN under which

V
�1=2
N (�XN � �N)

d! N [0; I]:

Note that if we can apply a CLT to �XN we can also apply it to N�1=2 �XN .

Theorem A17: (Limit Normal Product Rule) If a vector aN
d! N [�;A] and

a matrix HN
p! H, where H is positive de�nite, then

HNaN
d! N [H�;HAH0]:

4.2. Consistency of OLS

To prove consistency we rewrite this as

b� = � + �N�1X0X
��1

N�1X0u:

The reason for renormalization in the right-hand side is thatN�1X0X = N�1P
i xix

0
i

is an average that converges in probability to a �nite nonzero matrix if xi satis�es
assumptions that permit a LLN to be applied to xix0i.
Then

plim b� = � + �plimN�1X0X
��1 �

plimN�1X0u
�
;

using Slutsky�s Theorem (Theorem A.3). The OLS estimator is therefore consis-
tent for � (i.e., plim b�OLS = �) if

plimN�1X0u = 0:

If a law of LLN can be applied to the average N�1X0u = N�1P
i xiui then

a necessary condition for this to hold is that E[xiui] = 0. The fundamental
condition for consistency of OLS is that E[uijxi] = 0 so that E[xiui] = 0.
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4.3. Limit Distribution of OLS

Given consistency, the limit distribution of b� is degenerate with all the mass at
�. To obtain a limit distribution we scale b�OLS up by a multiple pN , so

p
N(b� � �) = �N�1X0X

��1
N�1=2X0u:

We know plimN�1X0X exists and is �nite and nonzero from the proof of consis-
tency. For iid errors, E[ujX] = 0 and V[X0ujX] = E[X0uu0X0jX] = �2X0X we
assume that a CLT can be applied to bN = N�1=2X0u to yield

[N�1X0X]�1=2 �N�1=2X0u
d! N [0; I], so by Theorem A17

N�1=2X0u
d! N [0; �2

�
plimN�1X0X

�
]:

Then by Theorem A17 (the limit normal product rule)

p
N(b� � �) d! (plimN�1X0X)

�1 �N [0; �2 (plimN�1X0X)]
d! N [0; �2 (plimN�1X0X)

�1
]:

4.4. Asymptotic Distribution of OLS

Then dropping the limits
p
N(b� � �) � N [0; �2 �N�1X0X

�
];

so b� a� N [�; �2(X0X)�1]:

The asymptotic variance matrix is

V[b�] = �2(X0X)�1;

and is consistently estimated by the estimated variance matrix

bV[b�] = s2(X0X)�1;

where s2 is consistent for �2. For example, s2 = bu0bu=(N � k) or s2 = bu0bu=N:
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4.5. OLS with Heteroskedastic Errors

What if the errors are heteroskedastic? If E[uu0jX] = � =Diag[�2i ] then V[X0ujX] =
E[X0uu0X0jX] = X0�X =

PN
i=1 �

2
ixix

0
i. A Multivariate CLT gives

[N�1X0�X]�1=2 �N�1=2X0u
d! N [0; I], so

N�1=2X0u
d! N [0; plimN�1X0�X];

leading to
p
N(b� � �) d! (plimN�1X0X)

�1 �N [0; plimN�1X0�X]
d! N [0; �2 (plimN�1X0X)

�1 � plimN�1X0�X� (plimN�1X0X)
�1
]:

Then dropping the limits etceterab� a� N [�; (X0X)�1X0�X(X0X)�1]:

The asymptotic variance matrix is

V[b�] = (X0X)�1X0�X(X0X)�1:

White (1980) showed that we can use the estimated asymptotic variance matrixbV[b�] = (X0X)�1(
XN

i=1
bui2xix0i)(X0X)�1;

where bui = yi � x0ib� is the OLS residual.
Why does this work? There are N variances �2i and only N observations,

so we cannot consistently estimate � by b� = Diag[bui2]. But this is not neces-
sary! We just need to consistently estimate the k � k matrix plimN�1X0�X =
plimN�1PN

i=1 �
2
ixix

0
i.

Since E[u2ixix
0
ijxi] = �2ixix0i, by a LLN, if the error ui was observed, we could use

plimN�1
XN

i=1
u2ixix

0
i = plimN

�1
XN

i=1
�2ixix

0
i:

The error is not observed, so we instead use the residual. Formally, since b� p! �,bu2i� u2i p! 0 so replacing u2i by bu2i makes no di¤erence asymptotically. This gives
White�s estimator.
This is a fundamental result. Without specifying a model for heteroskedasticity

we can do OLS and get heteroskedastic robust standard errors. This generalizes
to other failures of � = �2I, notably serially correlated errors (use Newey-West)
and clustered errors. And it generalizes to estimators other than OLS (e.g. IV,
MLE).
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5. Optional Extra: Di¤erent Sampling Schemes

The key for consistency is obtaining the probability of the two averages (of xiui
and of x2i ), by use of laws of large numbers (LLN). And for asymptotic normality
the key is the limit distribution of the average of xiui, obtained by a central limit
theorem (CLT).
Di¤erent assumptions about the stochastic properties of xi and ui lead to

di¤erent properties of x2i and xiui and hence di¤erent LLN and CLT.

5.1. Sampling Schemes

For the data di¤erent sampling schemes assumptions include:

1. Simple Random Sampling (SRS).

SRS is when we randomly draw (yi; xi) from the population. Then xi are
iid. So x2i are iid, and xiui are iid if the errors ui are iid.

2. Fixed regressors.
This occurs in an experiment where we �x the xi and observe the resulting
random yi. Given xi �xed and ui iid it follows that xiui are inid (even if ui
are iid), while x2i are nonstochastic.

3. Exogenous Strati�ed Sampling
This occurs when we oversample some values of x and undersample others.
Then xi are inid, so xiui are inid (even if ui are iid) and x2i are inid.

The simplest results assume simple random sampling, as we have done.

5.2. LLN and CLT for inid Data

Suppose rather than Xi iid [�; �2] we have have Xi inid [�; �2]. Then we often use
the following LLN and CLT.

Theorem A9: (Markov LLN ) Let fXig be inid (independent but not identi-
cally distributed) with E[Xi] = �i and V[Xi] = �

2
i . If

P1
i=1 (E[jXi � �ij

1+�]=i1+�) <

1, for some � > 0, then ( �XN �N�1PN
i=1 E[Xi])

as! 0:

Compared to Kolmogorov LLN, the Markov LLN allows nonidentical distri-
bution, at expense of require existence of an absolute moment beyond the �rst.
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The rest of the side-condition is likely to hold with cross-section data. e.g. if set
� = 1, then need variance plus

P1
i=1 (�

2
i =i

2) <1 which happens if �2i is bounded.

Theorem A15: (Liapounov CLT ) Let fXig be independent with E[Xi] = �i and

V[Xi] = �
2
i . If lim

�PN
i=1 E[jXi � �ij2+�]

�
=
�PN

i=1 �
2
i

�(2+�)=2
= 0, for some choice

of � > 0, then ZN =
PN

i=1 (Xi � �i)=
qPN

i=1 �
2
i

d! N [0; 1].

Compared to Lindberg-Levy, the Liapounov CLT additionally requires existence
of an absolute moment of higher order than two.

5.3. Consistency of OLS Estimator

Obtain probability limit of b� = � + [ 1
N

PN
i=1 xiui]=[

1
N

PN
i=1 x

2
i ]:

5.3.1. Simple Random Sampling (SRS) with iid errors

Assume xi iid with mean �x and ui iid with mean 0.
As xiui are iid, apply Khinchine�s Theorem yielding N�1P

i xiui
p! E[xu] =

E[x]�E[u] = 0.
As x2i are iid, apply Khinchine�s Theorem yielding N�1P

i x
2
i

p! E[x2] which
we assume exists.
By Theorem A3 (Probability Limit Continuity) plim[aN=bN ] = a=b if b 6= 0.

Then

plim b� = � + plim 1
N

PN
i=1 xiui

plim 1
N

PN
i=1 x

2
i

= � +
0

E[x2]
= �:

5.3.2. Fixed Regressors with iid errors

Assume xi �xed and that ui iid with mean 0 and variance �2.
Then xiui are inid with mean E[xiui] = xiE[ui] = 0 and variance V[xiui] =

x2i�
2. ApplyMarkov LLN yieldingN�1P

i xiui�N�1P
i E[xiui]

p! 0, soN�1P
i xiui

p!
0. The side-condition with � = 1 is

P1
i=1 x

2
i�
2=i2 which is satis�ed if xi is bounded.

We also assume limN�1P
i x

2
i exists.

By Theorem A3 (Probability Limit Continuity) plim[aN=bN ] = a=b if b 6= 0.
Then

plim b� = � + plim 1
N

PN
i=1 xiui

lim 1
N

PN
i=1 x

2
i

= � +
0

lim 1
N

PN
i=1 x

2
i

= �:

14



5.3.3. Exogenous Strati�ed Sampling with iid errors

Assume xi inid with mean E[xi] and variance V[xi] and ui iid with mean 0.
Now xiui are inid with mean E[xiui] =E[xi]E[ui] = 0 and variance V[xiui] =E[x2i ]�

2,
so need Markov LLN. This yields N�1P

i xiui
p! 0, with the side-condition satis-

�ed if E[x2i ] is bounded.
And x2i are inid, so need Markov LLN with side-condition that requires e.g.

existence and boundedness of E[x4i ].
Combining again get plim b� = �.

5.4. Limit Distribution of OLS Estimator

Obtain limit distribution of
p
N(b� � �) = [ 1p

N

PN
i=1 xiui]=[

1
N

PN
i=1 x

2
i ]:

5.4.1. Simple Random Sampling (SRS) with iid errors

Assume xi iid with mean �x and second moment E[x
2], and assume ui iid with

mean 0 and variance �2.
Then xiui are iid, with mean E[xu] =E[x]�E[u] = 0 and variance V[xu] =

E[(xu)2]� (E[xu])2 =E[x2u2]� 0 = E[x2]E[u2] = �2E[x2]. Apply Lindeberg-Levy
CLT yielding

p
N

 
N�1PN

i=1 xiui � 0p
�2E[x2]

!
=

1p
N

PN
i=1 xiuip

�2E[x2]
d! N [0; 1]:

Using Slutsky�s theorem that aN � bN
d! a � b (for aN

d! a and bN
p! b), this

implies that

1p
N

XN

i=1
xiui =

1p
N

PN
i=1 xiuip

�2E[x2]
�
p
�2E[x2] d! N [0; 1]�

p
�2E[x2] d! N [0; �2E[x2]]:

Then using Slutsky�s theorem that aN=bN
d! a=b (for aN

d! a and bN
p! b)

p
N(b� � �) =

1p
N

PN
i=1 xiui

1
N

PN
i=1 x

2
i

d! N [0; �2E[x2]]

plim 1
N

PN
i=1 x

2
i

d! N [0; �2E[x2]]
E[x2]

d! N
h
0; �2

�
E[x2]

��1i
;

where we use result from consistency proof that plimN�1PN
i=1 x

2
i =E[x

2].
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5.4.2. Fixed Regressors with iid errors

Assume xi �xed and and ui iid with mean 0 and variance �2.
Then xiui are inid with mean 0 and variance V[xiui] = x2i�

2. Apply Liapounov
LLN yielding

p
N

0@ N�1PN
i=1 xiui � 0q

limN�1PN
i=1 x

2
i�
2

1A =

1p
N

PN
i=1 xiuiq

�2 limN�1PN
i=1 x

2
i

d! N [0; 1]:

Using Slutsky�s theorem that aN � bN
d! a � b (for aN

d! a and bN
p! b), this

implies

1p
N

XN

i=1
xiui =

1p
N

PN
i=1 xiuiq

�2 limN�1PN
i=1 x

2
i

�
r
�2N�1

XN

i=1
x2i

= N [0; 1]�
r
�2 limN�1

XN

i=1
x2i

d! N [0; �2 lim 1

N

XN

i=1
x2i ]:

Then using Slutsky�s theorem that aN=bN
d! a=b (for aN

d! a and bN
p! b)

p
N(b���) = 1p

N

PN
i=1 xiui

1
N

PN
i=1 x

2
i

d!
N
h
0; �2 lim 1

N

PN
i=1 x

2
i

i
lim 1

N

PN
i=1 x

2
i

d! N
"
0; �2

�
lim

1

N

XN

i=1
x2i

��1#
:

5.4.3. Exogenous Strati�ed Sampling with iid errors

Assume xi inid with mean E[xi] and variance V[xi] and ui iid with mean 0.
Similar to �xed regressors will need to use Liapounov CLT. We will get

p
N(b� � �) d! N

"
0; �2

�
plim

1

N

XN

i=1
x2i

��1#
:
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6. Simulation Exercise

6.1. Data Generating Process

Suppose yi are iid �2(1), which has mean 1 and variance 2.
Then �y = 1

N

PN
i=1 yi has E[�y] = 1, V[�y] = V[�y]=N = 2=N , and using the result

that the sum of N independent �2(1) is �2(N), we know that �y � �2(N)=N .

6.2. Distribution of �y

From a CLT we know that as N !1

�y � N [1; 2=N ]:

Question: how well does this apply in �nite samples? Answer: do a simulation:

� For the sth of S times, generate N observations from �2(1) and calculate �ys.

Then does the density of the S generated �ys look like the density of a standard
normal with mean 1 and variance 2=N? We can do this in several ways: comparing
key moments, or comparing key percentiles, or compare a histogram or (kernel)
density estimate to the normal.

6.3. Distribution of t-test

The t-test statistic of H0 : � = 1 is

t =
�y � 1
s�y

;

where s2�y = s
2
y=N and s2y =

1
N�1

PN
i=1 yi.

From asymptotic theory we know that t � N [0; 1] as N ! 1. As a �nite
sample correction we will instead suppose it is t(N�1) degrees distributed, which
is the exact result if yi were normal rather than chi-square.
Question: how well does this apply in �nite samples? Answer: do a simulation:

� For the sth of S times, generate N observations from �2(1) and calculate �ys,
s�ys and hence ts =

�ys�1
s�ys
.

Then does the density of the S generated ts look like a t(N�1) density? Again
we can test the similarity using moments, percentiles or kernel density estimate.
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6.4. Size of t-test

For the t-test it is behavior in the tails that really matter. In addition to view
the 2:5 and 97:5 percentiles, we investigate the size of the t-test. Recall

Size = Pr[reject H0 : � = 1jH0 true]

The nominal size of the test is the size that we think we are testing at. Assume
that t � T (N � 1) distributed under H0. Then for two-tailed testing at 5 percent

Nominal size = 0:05 = Pr[jtj > t:025;N�1jt � T (N � 1)]:

But we do not know that t � T (N � 1) under H0, and in small samples it is not
this. The true size of the test is the actual size that we are testing at.

True size = Pr[jtj > t:025;N�1jtrue distribution of t under H0]:

To obtain this unknown true distribution we do a simulation. For the sth of
S times, generate N observations from �2(1), calculate ts =

�ys�1
s�ys
, and record

whether jtsj > t:025;N�1, i.e. whether we reject H0.
Then the simulation estimate of true size is the proportion of rejections:

True size = (# simulations with jtj > t:025;N�1)=(# simulations):
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