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4.8 Instrumental Variables

Amajor complication that is emphasized in microeconometrics is the possibility of
inconsistent parameter estimation due to endogenous regressors. Then regression
estimates measure only the magnitude of association, rather than the magnitude
and direction of causation which is needed for policy analysis.
The instrumental variables estimator provides a way to nonetheless obtain con-

sistent parameter estimates. This method, widely used in econometrics and rarely
used elsewhere, is conceptually dif�cult and easily misused.
We provide a lengthy expository treatment that de�nes an instrumental variable

and explains how the instrumental variables method works in a simple setting.

4.8.1 Inconsistency of OLS

Consider the scalar regression model with dependent variable y and single regres-
sor x. The goal of regression analysis is to estimate the conditional mean function
E[yjx]. A linear conditional mean model, without intercept for notational conve-
nience, speci�es

E[yjx] = �x: (4.42)

This model without intercept nests the model with intercept if dependent and re-
gressor variables are measured as deviations from their respective means. Interest
lies in obtaining a consistent estimate of � as this gives the change in the con-
ditional mean given an exogenous change in x. For example, interest may lie in
the effect in earnings due to an increase in schooling due to exogenous reasons,
such as an increase in the minimum school leaving age, that are not a choice of the
individual.
The OLS regression model speci�es

y = �x+ u; (4.43)

where u is an error term. Regression of y on x yields OLS estimate b� of �.
Standard regression results make the assumption that the regressors are uncor-

related with the errors in the model (4.43). Then the only effect of x on y is a direct
effect via the term �x. We have the following path analysis diagram

x �! y
%

u

where there is no association between x and u.
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But in some situations there may be an association between regressors and
errors. For example, consider regression of earnings (y) on years of schooling (x).
The error term u embodies all factors other than schooling that determine earnings,
such as ability. Suppose a person has a high level of u, due to high (unobserved)
ability. This increases earnings, since y = �x + u. But it may also lead to higher
levels of x, since schooling is likely to be higher for those with high ability. A
more appropriate path diagram is then the following

x �! y
" %
u

where now there is an association between x and u.
What are the consequences of this correlation between x and u? Now higher

levels of x have two effects on y. From (4.43) there is both a direct effect via
�x and an indirect effect via u effecting x which in turn effects y. The goal of
regression is to estimate only the �rst effect, yielding an estimate of �. The OLS
estimate will instead combine these two effects, giving b� > � in this example
where both effects are positive. Using calculus, we have y = �x+ u(x) with total
derivative

dy

dx
= � +

du

dx
: (4.44)

The data give information on dy=dx, so OLS estimates the total effect � + du=dx
rather than � alone. The OLS estimator is therefore biased and inconsistent for �,
unless there is no association between x and u.
A more formal treatment of the linear regression model withK regressors leads

to the same conclusion. From subsection 7.1 a necessary condition for consistency
of OLS is that plimN�1X0u = 0. Consistency requires that the regressors are
asymptotically uncorrelated with the errors. From (4.37) the magnitude of the
inconsistency of OLS is (X0X)�1X0u, the OLS coef�cient from regression of u
on x. This is just the OLS estimate of du=dx, con�rming the intuitive result in
(4.44).

4.8.2 Instrumental Variable

The inconsistency of OLS is due to endogeneity of x, meaning that changes in x
are associated not only with changes in y but also changes in the error u. What is
needed is a method to generate only exogenous variation in x. An obvious way is
through an experiment, but for most economics applications experiments are too
expensive or even infeasible.
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De�nition of an Instrument

A crude experimental or treatment approach is still possible using observational
data, provided there exists an instrument z that has the property that changes in
z are associated with changes in x but do not led to change in y (aside from the
indirect route via x). This leads to the following path diagram

z �! x �! y
" %
u

which introduces a variable z that is associated with x but not u. It is still the case
that z and y will be correlated, but the only source of such correlation is the indirect
path of z being correlated with x which in turn determines y. The more direct path
of z being a regressor in the model for y is ruled out.
More formally, a variable z is called an instrument or instrumental variable

for the regressor x in the scalar regression model y = �x+u if (1) z is uncorrelated
with the error u;and (2) z is correlated with the regressor x.
The �rst assumption excludes the instrument z from being a regressor in the

model for y, since if instead y depended on both x and z and y is regressed on x
alone then z is being absorbed into the error so that z will then be correlated with
the error. The second assumption requires that there is some association between
the instrument and the variable being instrumented.

Examples of an Instrument

In many microeconometric applications it is dif�cult to �nd legitimate instruments.
Here we provide two examples.
Suppose we want to estimate the response of market demand to exogenous

changes in market price. Quantity demanded clearly depends on price, but prices
are not exogenously given since they are determined in part by market demand. A
suitable instrument for price is a variable that is correlated with price but does not
directly effect quantity demanded. An obvious candidate is a variable that effects
market supply, since this also effect prices, but is not a direct determinant of de-
mand. An example is a measure of favorable growing conditions if an agricultural
product is being modelled. The choice of instrument here is uncontroversial, pro-
vided favorable growing conditions do not directly effect demand, and is helped
greatly by the formal economic model of supply and demand.
Next suppose we want to estimate the returns to exogenous changes in school-

ing. Most observational data sets lack measures of individual ability, so regression
of earnings on schooling has error that includes unobserved ability and hence is
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correlated with the regressor schooling. We need an instrument z that is correlated
with schooling, uncorrelated with ability and more generally is uncorrelated with
the error term which means that it cannot directly determine earnings.
One popular candidate for z is proximity to college or university (Card, 1995).

This clearly satis�es condition 2 as, for example, people whose home is a long
way from a community college or state university are less likely to attend college.
It most likely satis�es 1, though since it can be argued that people who live a long
way from a college are more likely to be in low-wage labor markets one needs to
estimate a multiple regression for y that includes as additional regressors controls
such as indicators for non-metropolitan area.
A second candidate for the instrument is month of birth (Angrist and Krueger,

1991). This clearly satis�es condition 1 as there is no reason to believe that month
of birth has a direct effect on earnings if the regression includes age in years. Sur-
prisingly condition 2 may also be satis�ed, as birth month determines age of �rst
entry into school which in turn may effect years of schooling due to laws that spec-
ify a minimum school leaving age. Bound et al. (1995) provide a critique of this
instrument.
The consequences of choosing poor instruments are considered in detail in

section 9.

4.8.3 Instrumental Variables Estimator

For regression with scalar regressor x and scalar instrument z, the instrumental
variables (IV) estimator is de�ned as

b�IV = (z0x)�1z0y; (4.45)

where in the scalar regressor case z, x and y are N � 1 vectors. This estimator
provides a consistent estimator for the slope coef�cient � in the linear model y =
�x+ u if z is correlated with x and uncorrelated with the error term.
There are several ways to derive (4.45). We provide an intuitive derivation, one

that differs from derivations usually presented such as that in chapter 6.2.5.
Return to the earnings-schooling example. Suppose a one unit change in the in-

strument z is associated with 0.2 more years of schooling and with a $500 increase
in annual earnings. This increase in earnings is a consequence of the indirect ef-
fect that increase in z led to increase in schooling which in turn increases income.
Then it follows that 0.2 years additional schooling are associated with a $500 in-
crease in earnings, so that a one year increase in schooling is associated with a
$500=0:2 = $2; 500 increase in earnings. The causal estimate of � is therefore
2500. In mathematical notation we have estimated the changes dx=dz and dy=dz
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and calculated the causal estimator as

�IV =
dy=dz

dx=dz
: (4.46)

This approach to identi�cation of the causal parameter � is given in Heckman
(2000, p.58); see also the example in chapter 2.4.2.
All that remains is consistent estimation of dy=dz and dx=dz. The obvi-

ous way to estimate dy=dz is by OLS regression of y on z with slope estimate
(z0z)�1z0y. Similarly estimate dx=dz by OLS regression of x on z with slope
estimate (z0z)�1z0x. Then

b�IV = (z0z)�1z0y

(z0z)�1z0x
= (z0x)�1z0y: (4.47)

4.8.4 Wald Estimator

A leading simple example of IV is one where the instrument z is a binary instru-
ment. Denote the sub-sample averages of y and x by �y1 and �x1 when z = 1 and
by �y0 and �x0 when z = 0. Then �y=�z = (�y1 � �y0) and �x=�z = (�x1 � �x0),
and (4.46) yields b�Wald = (�y1 � �y0)

(�x1 � �x0)
: (4.48)

This estimator is called the Wald estimator, after Wald (1940), or the grouping
estimator.
The Wald estimator can also be obtained from the formula (4.45). For the

no-intercept model variables are measured in deviations from means, so z0y =P
i(zi�z)(yi��y). For binary z this yields z0y = N1(�y1��y) = N1N0(�y1��y0)=N ,

whereN0 andN1 are the number of observations for which z = 0 and z = 1. This
result uses �y1 � �y = (N0�y1 +N1�y1)=N � (N0�y0 +N1�y1)=N = N0(�y1 � �y0)=N .
Similarly z0x = N1N0(�x1 � �x0)=N . Combining, (4.45) yields (4.48).
For the earnings-schooling example it is being assumed that we can de�ne

two groups where group membership does not directly determine earnings, though
does affect level of schooling and hence indirectly affects earnings. Then the IV
estimate is the difference in average earnings across the two groups divided by the
difference in average schooling across the two groups.

4.8.5 Covariance and Correlation Analysis

The IV estimator can also be interpreted in terms of covariances or correlations.
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For covariances we have directly from (4.45) that

b�IV = Cov[z; y]
Cov[x; y]

: (4.49)

For correlations, note that the OLS estimator for the model (4.43) can be writ-
ten as b�OLS = rxy

p
y0y=

p
x0x where rxy = x0y=

q
(x0x)(y0y) is the sample

correlation between x and y. This leads to the interpretation of the OLS estimator
as implying that a one standard deviation change in x is associated with an rxy
standard deviation change in y. The problem is that the correlation rxy is contam-
inated by correlation between x and u. An alternative approach is to measure the
correlation between x and y indirectly by the correlation between z and y divided
by the correlation between z and x. Then

b�IV = rzy
rzx

p
y0yp
x0x

; (4.50)

which can be shown to equal b�IV in (4.45).
4.8.6 IV Estimation for Multiple Regression

Now consider the multiple regression model with typical observation

y = x0�+u;

withK regressor variables, so x and � areK � 1 vectors.

Instruments

Assume the existence of an r� 1 vector of instruments z, with r � K, satisfying
(1) z is uncorrelated with the error u; (2) z is correlated with the regressor vector
x; and (3) z is strongly correlated, rather than weakly correlated, with the regressor
vector x:
The �rst two properties are necessary for consistency and were presented ear-

lier in the scalar case. The third property, de�ned in subsection 9.1, is a strength-
ening of the second to ensure good �nite sample performance of the IV estimator.
In the multiple regression case z and x may share some common components.

Some components of x, called exogenous regressors, may be uncorrelated with u.
These components are clearly suitable instruments as they satisfy condition 1 and
2. Other components of x, called endogenous regressors, may be correlated with
u. These components lead to inconsistency of OLS and are also clearly unsuitable
instruments as they do not satisfy condition 1. Partition x into x = [x01 x

0
2]
0 where
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x1 contains endogenous regressors and x2 contains exogenous regressors. Then a
valid instrument is z = [z01 x

0
2]
0, where x2 can be an instrument for itself, but we

need to �nd as many instruments z1 as there are endogenous variables x1.

Identi�cation

Identi�cation in a simultaneous equations model is presented in chapter 2.5. Here
we have a single equation. The order condition requires that the number of instru-
ments must at least equal the number of endogenous components, so that r � K.
The model is said to be just-identi�ed if r = K and over-identi�ed if r > K.
In many multiple regression applications there is only one endogenous regres-

sor. For example, the earnings on schooling regression will include many other
regressors such as age, geographic location and family background. Interest lies
in the coef�cient on schooling, but this is an endogenous variable that is felt to be
correlated with the error because ability is unobserved. Possible candidates for the
necessary single instrument for schooling have already been given in subsection
8.2.
If an instrument fails the �rst condition the instrument is an invalid instru-

ment. If an instrument fails the second condition the instrument is an irrelevant
instrument, and the model may be unidenti�ed if too few instruments are rel-
evant. The third condition fails when there is very low correlation between the
instrument and the endogenous variable being instrumented. The model is said to
be weakly identi�ed and the instrument is called a weak instrument.

Instrumental Variables Estimator

When the model is just-identi�ed, so r = K, the instrumental variables estima-
tor is the obvious matrix generalization of (4.45)

b�IV = �Z0X��1 Z0y; (4.51)
where Z is an N � K matrix with ith row z0i. Substituting the regression model
y = X� + u for y in (4.51) yieldsb�IV =

�
Z0X

��1
Z0[X� + u]

= �+
�
Z0X

��1
Z0u

= �+
�
N�1Z0X

��1
N�1Z0u:

It follows immediately that the IV estimator is consistent if

plimN�1Z0u= 0

plimN�1Z0X 6= 0:
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These are essentially conditions 1 and 2 that z is uncorrelated with u and correlated
with x. To ensure that the inverse of N�1Z0X exists it is assumed that Z0X is of
full rankK, a stronger assumption than the order condition that r = K.
With heteroskedastic errors the IV estimator is asymptotically normal with

mean � and variance matrix consistently estimated by

bV[b�IV] = (Z0X)�1Z0 b
Z(Z0X)�1; (4.52)

where b
=Diag[bu2i ]. This result is obtained in a manner similar to that for OLS
given in subsection 4.4.
The IV estimator although consistent leads to a loss of ef�ciency that can be

very large in practice. Intuitively IV will not work well if the instrument z has low
correlation with the regressor x, see subsection 9.3.

4.8.7 Two-Stage Least Squares

The IV estimator in (4.51) requires that the number of instruments equals the num-
ber of regressors. For over-identi�ed models the IV estimator can be used, by
discarding some of the instruments so that the model is just-identi�ed. But there
can be an asymptotic ef�ciency loss in discarding these instruments.
Instead a common procedure is to use the two-stage least squares (2SLS)

estimator

b�2SLS = hX0Z(Z0Z)�1Z0Xi�1 hX0Z(Z0Z)�1Z0yi ; (4.53)

presented and motivated in chapter 6.4.
The 2SLS estimator is an IV estimator. In a just-identi�ed model it simpli�es

to the IV estimator given in (4.51) with instruments Z. In an over-identi�ed model
the 2SLS estimator equals the IV estimator given in (4.51) if the instruments arebX, where bX = Z(Z0Z)�1Z0X is the predicted value of x from OLS regression of
x on z.
The 2SLS estimator gets its name from the result that it can be obtained by two

consecutive OLS regressions: OLS regression of x on z to get bx followed by OLS
of y on bx which gives b�2SLS. This interpretation does not necessarily generalize to
nonlinear regressions; see chapter 6.5.6.
The 2SLS estimator is often expressed more compactly as

b�2SLS = �X0PZX��1 �X0PZy� ; (4.54)

where
PZ = Z(Z

0Z)�1Z0
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is a projection matrix that satis�es PZ = P0Z, PZP
0
Z = PZ and PZZ = Z.

The 2SLS estimator can be shown to be asymptotically normal distributed with
estimated asymptotic variance

bV[b�2SLS] = N �X0PZX��1 hX0Z(Z0Z)�1bS(Z0Z)�1Z0Xi �X0PZX��1 ;
(4.55)

where in the usual case of heteroskedastic errors bS = N�1P
i bu2i ziz0i and bui =

yi � x0ib�2SLS. A commonly-used small sample adjustment is to divide by N �K
rather than N in the formula for bS.
In the special case that errors are homoskedastic simpli�cation occurs andbV[b�2SLS] = s2[X0PZX]�1. This latter result is given in many introductory treat-

ments, but the more general formula (4.55) is preferred as the modern approach is
to treat errors as potentially heteroskedastic.
For over-identi�ed models with heteroskedastic errors an estimator that White

(1982) calls the two-stage instrumental variables estimator is more ef�cient than
2SLS. And some commonly-used model speci�cation tests require estimation by
this estimator rather than 2SLS. For details see chapter 6.4.2.

4.8.8 IV Example

As an example of IV estimation, consider estimation of the slope coef�cient of x
for the dgp

y = 0 + 0:5x+ u

x = 0 + z + v;

where z � N [2; 1] and (u; v) are joint normal with means 0, variances 1 and
correlation 0:8.
OLS of y on x yields inconsistent estimates as x is correlated with u since by

construction x is correlated with v which in turn is correlated with u. IV estimation
yields consistent estimates. The variable z is a valid instrument since by construc-
tion it is uncorrelated with u but is correlated with x. Transformations of z, such
as z3, are also valid instruments.
Various estimates and associated standard errors from a generated data sample

of size 10,000 are given in Table 4.4. We focus on the slope coef�cient.
The OLS estimator is inconsistent, with slope coef�cient estimate of 0:902

being more than 50 standard errors from the true value of 0:5. The remaining
estimates are consistent and are all within two standard errors of 0:5.
There are several ways to compute the IV estimator. The slope coef�cient

from OLS regression of y on z is 0:5168 and from OLS regression of x on z is
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Table 4.4: Instrumental variables example

OLS IV 2SLS IV-ineff
Constant -0.804 -0.017 -0.017 -0.014

(0.014) (0.022) (0.007)
x 0.902 0.510 0.510 0.509

(0.006) (0.010) (0.014) (0.012)
R-squared 0.709 0.576 0.576 0.574

Note: Generated data for sample size 10,000. OLS is inconsistent and other estimators are consistent.
Robust standard errors reported though unnecessary here as errors are homoskedastic. The 2SLS
standard errors are incorrect. The data generating process is given in the text.

1:0124, yielding IV estimate 0:5168=1:0124 = 0:510 using (4.47). In practice one
instead directly computes the IV estimator using (4.45) or (4.51), with z used as the
instrument for x and standard errors computed using (4.52). The 2SLS estimator,
see (4.54), can be computed by OLS regression of y on bx, where bx is the prediction
from OLS regression of x on z. The 2SLS estimates exactly equal the IV estimates
in this just-identi�ed model, though the standard errors from this OLS regression
of y on bx are incorrect as explained in chapter 6.4.5.
The �nal column uses z3 rather than z as the instrument for x. This alternative

IV estimator is consistent, since z3 is uncorrelated with u and correlated with x.
But it is less ef�cient for this particular dgp, and the standard error of the slope
coef�cient rises from 0:010 to 0:012.
There is an ef�ciency loss in IV estimation compared to OLS estimation, see

(4.61) for a general result for the case of single regressor and single instrument.
Here Cor[x; z] = 0:71 is high so the loss is not great and the standard error of the
slope coef�cient increases from 0:006 to 0:010. In practice the ef�ciency loss can
be much greater than this:

4.9 Instrumental Variables in Practice

Important practical issues are determining whether IV methods are necessary and,
if necessary, determining whether the instruments are valid. The relevant speci�ca-
tion tests are presented in chapter 8.4. Unfortunately the validity tests are limited.
They require the assumption that in a just-identi�ed model the instruments are valid
and test only over-identifying restrictions.
While IV estimators are consistent given valid instruments, as detailed below

IV estimators can be much less ef�cient than the OLS estimator and can have �nite




