1.(a) We have $\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}$ as prediction of $y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+u_{i}$. under classical assumptions including normal error,

$$
\begin{array}{lc}
& y_{i}-\mathbf{x}_{i}^{* \prime} \widehat{\boldsymbol{\beta}}=\mathbf{x}_{i}^{* \prime} \boldsymbol{\beta}+u_{i}-\mathbf{x}_{i}^{* \prime} \widehat{\boldsymbol{\beta}}=\mathbf{x}_{i}^{* \prime}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})+u_{i} \sim \mathcal{N}\left[\mathbf{0}, \mathbf{x}_{i}^{* \prime} \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}^{*}+\sigma^{2}\right] \\
\Rightarrow & y_{i}-\mathbf{x}_{i}^{* \prime} \widehat{\boldsymbol{\beta}} \sim \mathcal{N}\left[\mathbf{0}, \sigma^{2}\left\{1+\mathbf{x}_{i}^{* \prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}^{*}\right\}\right] \\
\Rightarrow & \frac{y_{i}-\mathbf{x}_{i}^{* \prime} \widehat{\boldsymbol{\beta}}}{\sqrt{\sigma^{2}\left\{1++_{i}^{*}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}^{*}\right\}}} \sim \mathcal{N}[\mathbf{0}, 1] \\
\Rightarrow & \frac{y_{i}-\mathbf{x}_{i}^{*} \widehat{\boldsymbol{\beta}}}{\left.\sqrt{s^{2}} 1+\mathbf{x}_{i}^{* \prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}^{*}\right\}}
\end{array} T_{N-k} .
$$

(b) We have

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{1} & =\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime}\left[\mathbf{X}_{1}^{\prime} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\mathbf{u}\right]=\boldsymbol{\beta}_{1}+\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{X}_{2} \boldsymbol{\beta}_{2}+\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{u} . \\
\mathrm{E}\left[\widehat{\boldsymbol{\beta}}_{1}\right] & =\boldsymbol{\beta}_{1}+\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{X}_{2} \boldsymbol{\beta}_{2} \text { as } \mathrm{E}[\mathbf{u}]=\mathbf{0} .
\end{aligned}
$$

Conclude that OLS is biased unless $\mathbf{X}_{1}^{\prime} \mathbf{X}_{2}=\mathbf{0}$.
(c) We have

$$
\mathbf{y}=\left[\begin{array}{ll}
\mathbf{l} & \mathbf{X}_{2}^{*}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\boldsymbol{\beta}_{2}
\end{array}\right]+\mathbf{u}=\mathbf{Z} \gamma+\mathbf{u}
$$

The usual $\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}$ becomes

$$
\begin{aligned}
{\left[\begin{array}{c}
\widehat{\alpha}_{1} \\
\widehat{\boldsymbol{\beta}}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathbf{l}^{\prime} \mathbf{l} & \mathbf{X}^{* \prime} \mathbf{l} \mathbf{l} \\
\mathbf{l}^{\prime} \mathbf{X}_{2}^{* \prime} & \mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{l}^{\prime} \mathbf{y} \\
\mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right]=\left[\begin{array}{cc}
N & \mathbf{0} \\
\mathbf{0} & \mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{l}^{\prime} \mathbf{y} \\
\mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{N} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{l}^{\prime} \mathbf{y} \\
\mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{N} \mathbf{l}^{\prime} \mathbf{y} \\
\left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1} \mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
\bar{y} \\
\left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1} \mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right]
\end{aligned}
$$

2.(a) We have $\widehat{\boldsymbol{\beta}} \sim \mathcal{N}\left[\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]$, so $\mathbf{R} \widehat{\boldsymbol{\beta}}-r \sim \mathcal{N}\left[\mathbf{R} \boldsymbol{\beta}-\mathbf{r}, \sigma^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]$.

Under H_{0} this simplifies as $\mathbf{R} \boldsymbol{\beta}-\mathbf{r}=\mathbf{0}$, so $\mathbf{R} \widehat{\boldsymbol{\beta}}-r \sim \mathcal{N}\left[\mathbf{0}, \sigma^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]$.
Forming the quadratic gives the chi-square test statistic (assuming $\operatorname{rank}[\mathbf{R}]=q$)

$$
W=(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[\sigma^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r}) \sim \chi^{2}(q)
$$

(b) Here $\mathbf{R}=\left[\begin{array}{ll}1 & -2\end{array}\right]$ and $r=0$, so $\mathbf{R} \widehat{\boldsymbol{\beta}}-r=\left[\begin{array}{ll}1 & -2\end{array}\right]\left[\begin{array}{l}5 \\ 2\end{array}\right]=1$, and
$\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}=\mathbf{R}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]^{-1} \mathbf{R}^{\prime}=\left[\begin{array}{ll}1 & -2\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}1 \\ -2\end{array}\right]=\left[\begin{array}{ll}4 & -3\end{array}\right]\left[\begin{array}{c}1 \\ -2\end{array}\right]=10$.
So $W=(1)^{\prime}[0.1 \times 10]^{-1}(1)=1$.
The critical value is $\chi_{1}^{2}(0.05)=z_{, 025}^{2}=1.96^{2}=3.84$.
Since $W<3.84$ we do not reject $H_{0}: \beta_{1}=2 \beta_{2}$.
[Since $q=1$ here this can also be done as a z-test].
(c) Asymptotically we can replace σ^{2} by a consistent estimate s^{2} such as $s^{2}=\widehat{\mathbf{u}}^{\prime} \widehat{\mathbf{u}} /(N-k)$. Then $W^{*}=(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[s^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r}) \sim \chi^{2}(q)$.
Alternatively can use $F=W^{*} / q=(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[s^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r}) / q \sim F(q, N-k)$
3. Various topics
(a) An adequate answer is that a sequence of random variables $b_{N} \xrightarrow{p} b$ if for any $\varepsilon>0$

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left[\left|b_{N}-b\right|<\varepsilon\right]=1
$$

(b) A multivariate central limit places conditions on the vector components \mathbf{x}_{i} of the vector average $\overline{\mathbf{X}}_{N}$ such that

$$
\left(\mathrm{V}\left[\overline{\mathbf{X}}_{N}\right]\right)^{-1 / 2}\left(\overline{\mathbf{X}}_{N}-\mathrm{E}\left[\overline{\mathbf{X}}_{N}\right]\right) \xrightarrow{d} \mathcal{N}[\mathbf{0}, \mathbf{I}] .
$$

(c) The IV estimator (in the just-identified case) is $\widehat{\boldsymbol{\beta}}_{\text {IV }}=\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}$ where \mathbf{Z} is an $N \times k$ matrix of instruments with the property that $\operatorname{plim} N^{-1} \mathbf{Z}^{\prime} \mathbf{u}=\mathbf{0}$.
It has the advantage of being consistent even if OLS is inconsistent due plim $N^{-1} \mathbf{X}^{\prime} \mathbf{u} \neq \mathbf{0}$.
(d) For $\mathbf{u} \sim[\mathbf{0}, \boldsymbol{\Sigma}], \widehat{\boldsymbol{\beta}}_{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{y}$.

The key property compared to OLS is that GLS is efficient (BLUE in the linear regression model]. It is also unbiased and consistent whenever GLS is unbiased.
(e) The variance of the OLS estimator is estimated by

$$
\begin{aligned}
\widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}] & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\boldsymbol{\Sigma}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \text { where } \widehat{\boldsymbol{\Sigma}}=\operatorname{Diag}\left[\widehat{u}_{i}^{2}\right] \\
& =\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \sum_{i} \widehat{u}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} .
\end{aligned}
$$

(f) We have $(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{Z} \mathbf{Z}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\mathbf{y}^{\prime} \mathbf{Z} \mathbf{Z}^{\prime} \mathbf{y}-2 \mathbf{y}^{\prime} \mathbf{Z} \mathbf{Z}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{Z} \mathbf{Z}^{\prime} \mathbf{X} \boldsymbol{\beta}$, so

$$
\begin{aligned}
& \Rightarrow \quad \partial(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{Z Z} \mathbf{Z}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) / \partial \boldsymbol{\beta}=-2 \mathbf{X}^{\prime} \mathbf{Z} \mathbf{Z}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{Z} \mathbf{Z}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{0} \\
& \Rightarrow \quad \mathbf{X}^{\prime} \mathbf{Z Z} \mathbf{Z}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \mathbf{Z Z} \mathbf{Z}^{\prime} \mathbf{y} \\
& \left.\Rightarrow \quad \boldsymbol{\beta}=\left(\mathbf{X}^{\prime} \mathbf{Z Z} \mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z Z} \mathbf{Y} \text { [does not simplify further as } m>k\right]
\end{aligned}
$$

4. (a) We have $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A}(\mathbf{X} \boldsymbol{\beta}+\mathbf{u})=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{u}$.

So $\mathrm{E}[\widehat{\boldsymbol{\beta}}]=\boldsymbol{\beta}+\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{u}\right]=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A E}[\mathbf{u}]=\boldsymbol{\beta}$, as $\mathrm{E}[\mathbf{u}]=\mathbf{0}$.
And $\mathrm{V}[\widehat{\boldsymbol{\beta}}]=\mathrm{E}\left[(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right]=\mathrm{E}\left[\left(\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A u}\right) \times\left(\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{u}\right)^{\prime}\right]$

$$
=\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A E}\left[\mathbf{u u} u^{\prime}\right] \mathbf{X A}\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1}=\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A X}\left(\mathbf{X}^{\prime} \mathbf{A X}\right)^{-1}
$$

(b) We have

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}= & \boldsymbol{\beta}+\left(N^{-1} \mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} N^{-1} \mathbf{X}^{\prime} \mathbf{A u} \\
& \xrightarrow{p} \boldsymbol{\beta}+\left(\operatorname{plim} N^{-1} \mathbf{X}^{\prime} \mathbf{A X}\right)^{-1} \operatorname{plim} N^{-1} \mathbf{X}^{\prime} \mathbf{A u} \\
& \xrightarrow{p} \boldsymbol{\beta} \text { since first plim is finite and second is zero. }
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})= & \left(N^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \frac{1}{\sqrt{N}} \mathbf{X}^{\prime} \mathbf{A} \mathbf{u} \\
& \xrightarrow{d}\left(\operatorname{plim} N^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \times \mathcal{N}[\mathbf{0}, \mathbf{B}] \\
& \xrightarrow{p} \mathcal{N}\left[\mathbf{0},\left(\operatorname{plim} N^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \quad \mathbf{B}\left(\operatorname{plim} N^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1}\right]
\end{aligned}
$$

(d) Here

$$
\begin{aligned}
\mathbf{B} & =\lim \mathrm{V}\left[\frac{1}{\sqrt{N}} \mathbf{X}^{\prime} \mathbf{A u}\right]=\lim \mathrm{E}\left[\frac{1}{N} \mathbf{X}^{\prime} \mathbf{A} \mathbf{u} \mathbf{u}^{\prime} \mathbf{A} \mathbf{X}\right]=\lim N^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A X} . \\
& \Rightarrow \widehat{\boldsymbol{\beta}} \stackrel{a}{\sim} \mathcal{N}\left[\boldsymbol{\beta},\left(\mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A X}\left(\mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1}\right] .
\end{aligned}
$$

5. (a) Here $\widehat{y}=350.8251+0.0017691 \times 179420.7=668.2382=\overline{\text { value }}$.

Not surprised. Since OLS residuals sum to zero, $\overline{\widehat{y}}=\overline{y+\widehat{u}}=\bar{y}+\overline{\widehat{u}}=\bar{y}$.
(b) The claim is the alternative, so we reject if $\beta_{\text {hhsize }}>0$ and here $\widehat{\beta}_{\text {hhsize }}=69.27>0$.

The p-value for a one-sided test is half that for two-sided test: $0.054 / 2=0.027$.
Since $p=0.027<0.05$ we reject $H_{0}: \beta_{\text {hhsize }} \leq 0$ at level 0.05 and confirm the claim.
(c) This is not clear. The R^{2} increases from 0.8983 to 0.9194 , though we should adjust for degrees of freedom and this is not given here [Stata does not report \bar{R}^{2} when the robust option is used, though we could calculate it given the reported root MSE and standard deviation of rent.] Vacrate is clearly statistically insignificant at 5%, hhsize is borderline, and percrent is clearly statistically significant at 5%.
(d)(i) The Stata command is test vacrate hhsize percrent
[Note that if errors are heteroskedastic then we cannot use the usual F-test in terms of sums of squared residuals. For this reason Stata did not give the ANOVA table when the robust option was used in regress. Instead we use $\widehat{\boldsymbol{\beta}} \stackrel{a}{\sim} \mathcal{N}[\mathbf{0}, \mathbf{V}]$ gives $W=(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r})^{\prime} \widehat{\mathbf{V}}^{-1}(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r}) \stackrel{a}{\sim} \chi^{2}(q)$ under $H_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{r}=\mathbf{0}$, where $\widehat{\mathbf{V}}$ is the heteroskedastic robust estimate. The Stata command test gives an F -version of this $F=W / q]$.
(ii) The Stata command is regress rent value, robust
(e) The third equation directly gives the elasticity.
$t=(\widehat{\beta}-1) / s_{\widehat{\beta}}=(0.5149396-1) / 0.0208438=-23.27 .|t|>t_{56 ; .025} \simeq 2$.
Very strong rejection of $H_{0}: \beta=1$ against $H_{a}: \beta \neq 1$.
(f)(i) Plot rent against value along with an OLS regression line and see of variability around the line increases as value increases.
(ii) See whether there is a big difference between heteroskedastic-robust standard errors and standard errors that assume homoskedastic errors.
(g) Run the OLS regression

$$
\frac{\text { rent }}{\text { value }}=\beta_{1} \frac{1}{\text { value }}+\beta_{2} \frac{\text { value }}{\text { value }}+u^{*}
$$

since the error $u^{*}=u /$ value $\sim\left[0, \sigma^{2}\right]$ if $u \sim\left[0, \sigma^{2}\right.$ value $\left.{ }^{2}\right]$.

	Exam $/ 50$		Exam $/ 50$	
$75 t h$ percentile	$43(86 \%)$			B +28 and above
Median	$38.75(77.5 \%)$	A $\quad 43$ and above	B	20.5 and above
$25 t h$ percentile	$34.5 \quad(59 \%)$	A- 35.5 and above		

