
240A Solutions to Final Exam Winter 2006

1.(a) We have x0ib� as prediction of yi = x0i� + ui. under classical assumptions including normal
error,

yi � x�0i b� = x�0i � + ui � x�0i b� = x�0i (b� � �) + ui � N [0;x�0i �2(X0X)�1x�i + �2]
) yi � x�0i b� � N [0; �2f1 + x�0i (X0X)�1x�i g]
) yi�x�0i b�p

�2f1+x�0i (X0X)�1x�i g
� N [0; 1]

) yi�x�0i b�p
s2f1+x�0i (X0X)�1x�i g

� TN�k
) 95% CI is � 2 b� � tN�k;:025 �ps2f1 + x�0i (X0X)�1x�i g:

(b) We have

b�1 = (X01X1)
�1X01[X

0
1�1 +X2�2 + u] = �1 + (X

0
1X1)

�1X01X2�2 + (X
0
1X1)

�1X01u:

E[b�1] = �1 + (X
0
1X1)

�1X01X2�2 as E[u] = 0:

Conclude that OLS is biased unless X01X2 = 0.

(c) We have
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2.(a) We have b� � N [�; �2(X0X)�1], so Rb� � r � N [R� � r; �2R(X0X)�1R0].
Under H0 this simpli�es as R� � r = 0, so Rb� � r � N [0; �2R(X0X)�1R0].
Forming the quadratic gives the chi-square test statistic (assuming rank[R] = q)

W = (Rb� � r)0[�2R(X0X)�1R0]�1(Rb� � r) � �2(q)
(b) Here R = [1 � 2] and r = 0, so Rb� � r = [1 � 2] � 5

2

�
= 1, and

R(X0X)�1R0 = R

�
1 1
1 2

��1
R0 = [1 � 2]

�
2 �1
�1 1

� �
1
�2

�
=
�
4 �3

� � 1
�2

�
= 10.

So W = (1)0[0:1� 10]�1(1) = 1.
The critical value is �21(0:05) = z

2
;025 = 1:96

2 = 3:84.
Since W < 3:84 we do not reject H0 : �1 = 2�2.
[Since q = 1 here this can also be done as a z-test].

(c) Asymptotically we can replace �2 by a consistent estimate s2 such as s2 = bu0bu=(N � k).
Then W � = (Rb� � r)0[s2R(X0X)�1R0]�1(Rb� � r) � �2(q).
Alternatively can use F =W �=q = (Rb� � r)0[s2R(X0X)�1R0]�1(Rb� � r)=q � F (q;N � k)
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3. Various topics

(a) An adequate answer is that a sequence of random variables bN
p! b if for any " > 0

lim
N!1

Pr[jbN � bj < "] = 1:

(b) A multivariate central limit places conditions on the vector components xi of the vector average
�XN such that �

V[�XN ]
��1=2

(�XN � E[�XN ])
d! N [0; I]:

(c) The IV estimator (in the just-identi�ed case) is b�IV = (Z0X)�1Z0y where Z is an N �k matrix
of instruments with the property that plimN�1Z0u = 0.
It has the advantage of being consistent even if OLS is inconsistent due plimN�1X0u 6= 0.

(d) For u � [0;�], b�GLS = (X0��1X)�1X0��1y.
The key property compared to OLS is that GLS is e¢ cient (BLUE in the linear regression model].
It is also unbiased and consistent whenever GLS is unbiased.

(e) The variance of the OLS estimator is estimated by

bV[b�] = (X0X)�1X0 b�X(X0X)�1 where b� = Diag[bu2i ]
=

�P
i xix

0
i

��1P
i bu2ixix0i �Pi xix

0
i

��1
:

(f) We have (y �X�)0ZZ0(y �X�) = y0ZZ0y�2y0ZZ0X� + �0X0ZZ0X�, so

) @(y �X�)0ZZ0(y �X�)=@� = �2X0ZZ0y+2X0ZZ0X� = 0
) X0ZZ0X� = X0ZZ0y

) � = (X0ZZ0X)�1X0ZZ0y [does not simplify further as m > k]

4.(a) We have b� = (X0AX)�1X0A(X� + u) = � + (X0AX)�1X0Au:
So E[b�] = �+ E[(X0AX)�1X0Au] = � + (X0AX)�1X0AE[u] = �, as E[u] = 0.
And V[b�] = E[(b� � �)(b� � �)0] = E[((X0AX)�1X0Au)�((X0AX)�1X0Au)0]

= (X0AX)�1X0AE[uu0]XA(X0AX)�1 = (X0AX)�1X0A�AX(X0AX)�1:

(b) We have

b� = � +
�
N�1X0AX

��1
N�1X0Au

p! � +
�
plimN�1X0AX

��1
plimN�1X0Au

p! � since �rst plim is �nite and second is zero.

(c) We have

p
N(b� � �) =

�
N�1X0AX

��1 1p
N
X0Au

d!
�
plimN�1X0AX

��1 �N [0; B]
p! N

h
0;
�
plimN�1X0AX

��1
B
�
plimN�1X0AX

��1i
(d) Here

B = limV
�
1p
N
X0Au

�
= limE

�
1

N
X0Auu

0
AX

�
= limN�1X0A�AX:

) b� a� N [�; (X0AX)�1X0A�AX(X0AX)�1]:
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5.(a) Here by = 350:8251 + 0:0017691� 179420:7 = 668:2382 = value:
Not surprised. Since OLS residuals sum to zero, by = y + bu = y + bu = y.
(b) The claim is the alternative, so we reject if �hhsize > 0 and here b�hhsize = 69:27 > 0:
The p-value for a one-sided test is half that for two-sided test: 0:054=2 = 0:027.
Since p = 0:027 < 0:05 we reject H0 : �hhsize � 0 at level 0:05 and con�rm the claim.

(c) This is not clear. The R2 increases from 0:8983 to 0:9194, though we should adjust for degrees
of freedom and this is not given here [Stata does not report R

2
when the robust option is used,

though we could calculate it given the reported root MSE and standard deviation of rent.] Vacrate
is clearly statistically insigni�cant at 5%, hhsize is borderline, and percrent is clearly statistically
signi�cant at 5%.

(d)(i) The Stata command is test vacrate hhsize percrent
[Note that if errors are heteroskedastic then we cannot use the usual F-test in terms of sums of
squared residuals. For this reason Stata did not give the ANOVA table when the robust option
was used in regress. Instead we use b� a� N [0;V] gives W = (Rb�� r)0 bV�1(Rb�� r) a� �2(q) under
H0 : R�� r = 0, where bV is the heteroskedastic robust estimate. The Stata command test gives
an F-version of this F =W=q].
(ii) The Stata command is regress rent value, robust

(e) The third equation directly gives the elasticity.
t = (b� � 1)=sb� = (0:5149396� 1)=0:0208438 = �23:27. jtj > t56;:025 ' 2:
Very strong rejection of H0 : � = 1 against Ha : � 6= 1.

(f)(i) Plot rent against value along with an OLS regression line and see of variability around the
line increases as value increases.
(ii) See whether there is a big di¤erence between heteroskedastic-robust standard errors and stan-
dard errors that assume homoskedastic errors.

(g) Run the OLS regression

rent
value

= �1
1

value
+ �2

value
value

+ u�

since the error u� = u=value � [0; �2] if u � [0; �2value2]:

Exam / 50

75th percentile 43 (86%)
Median 38:75 (77:5%)
25th percentile 34:5 (59%)

Exam / 50

B+ 28 and above
A 43 and above B 20:5 and above
A- 35:5 and above
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