1.(a) The usual $\widehat{\gamma}=\left[\mathbf{Z}^{\prime} \mathbf{Z}\right]^{-1} \mathbf{Z}^{\prime} \mathbf{y}$ with $\mathbf{Z}=\mathbf{X P}$ implies
$\widehat{\gamma}=\left[(\mathbf{X P})^{\prime}(\mathbf{X P})\right]^{-1}(\mathbf{X P})^{\prime} \mathbf{y}=\left[\mathbf{P}^{\prime} \mathbf{X}^{\prime} \mathbf{X P}\right]^{-1} \mathbf{P}^{\prime} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{P}^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{P}^{\prime}\right)^{-1} \mathbf{P}^{\prime} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{P}^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$.
So $\widehat{\gamma}=\mathbf{P}^{-1} \widehat{\boldsymbol{\beta}}$.
(b) We have

$$
\widehat{\mathbf{v}}=\mathbf{y}-\mathbf{Z} \widehat{\gamma}=\mathbf{y}-(\mathbf{X P}) \mathbf{P}^{-1} \widehat{\boldsymbol{\beta}}=\mathbf{y}-\widehat{\boldsymbol{\beta}} .
$$

The two residuals are identical.
(c) Here

$$
\mathbf{P}=\left[\begin{array}{cc}
\mathbf{I}_{k-1} & 0 \\
0 & 100
\end{array}\right] \quad \Rightarrow \quad \mathbf{P}^{-1}=\left[\begin{array}{cc}
\mathbf{I}_{k-1} & 0 \\
0 & \frac{1}{100}
\end{array}\right] .
$$

So

$$
\widehat{\boldsymbol{\gamma}}=\left[\begin{array}{c}
\widehat{\boldsymbol{\gamma}}_{k-1} \\
\widehat{\gamma}_{k}
\end{array}\right]=\mathbf{P}^{-1} \widehat{\boldsymbol{\beta}}=\left[\begin{array}{cc}
\mathbf{I}_{k-1} & 0 \\
0 & \frac{1}{100}
\end{array}\right]\left[\begin{array}{c}
\widehat{\boldsymbol{\beta}}_{k-1} \\
\widehat{\beta}_{k}
\end{array}\right]=\left[\begin{array}{c}
\widehat{\boldsymbol{\beta}}_{k-1} \\
\frac{1}{100} \widehat{\boldsymbol{\beta}}_{k}
\end{array}\right] .
$$

The first $k-1$ OLS coefficients are the same and the $k^{t h}$ is divided by 100 .
2.(a) $s^{2}=\widehat{\mathbf{u}}^{\prime} \widehat{\mathbf{u}} /(N-k)$, so $\bar{R}^{2}=1-s^{2} /\left[\sum_{i}\left(y_{i}-\bar{y}\right)^{2} /(N-1)\right]$.

Since $\sum_{i}\left(y_{i}-\bar{y}\right)^{2} /(N-1)$ does not change across models, \bar{R}^{2} will not change across models if s^{2} does not change.
(b) Let $s_{u}^{2}=\widehat{\mathbf{u}}^{\prime} \widehat{\mathbf{u}} /(N-k)$ be s^{2} in the unrestricted model and $s_{r}^{2}=\widetilde{\mathbf{u}}^{\prime} \widetilde{\mathbf{u}} /(N-k+q)$ be s^{2} in the restricted model, where we add q since q restrictions mean q more degrees of freedom.
Then since $s_{u}^{2}=s_{r}^{2}=s^{2}$ we have

$$
F=\frac{\left(\widehat{\mathbf{u}}^{\prime} \widehat{\mathbf{u}}-\widetilde{\mathbf{u}}^{\prime} \widetilde{\mathbf{u}}\right) / q}{\widehat{\mathbf{u}}^{\prime} \widehat{\mathbf{u}} /(N-k)}=\frac{\left((N-k+q) s^{2}-(N-k) s^{2}\right) / q}{s^{2}}=\frac{\left(q s^{2}\right) / q}{s^{2}}=1 .
$$

(c) Conclude that if there is no change in \bar{R}^{2} then $F=1$.
[Note that $F=1$ leads to non-rejection of restrictions at conventional levels of significance].
3.(a) Since $d 1+d 2+d 3=1$ implies $d 2=1-d 1-d 3$ we have

$$
\begin{aligned}
y & =\alpha+\beta x+\gamma d 2+\phi d 3+u \\
& =\alpha+\beta x+\gamma(1-d 1-d 3)+\phi d 3+u \\
& =(\alpha+\gamma)+\beta x-\gamma d 1+(\phi-\gamma) d 3+u
\end{aligned}
$$

so $\widehat{a}=\widehat{\alpha}+\widehat{\gamma}, \widehat{b}=\widehat{\beta}, \widehat{c}=-\widehat{\gamma}$, and $\widehat{d}=\widehat{\phi}-\widehat{\gamma}$.
(b) We have $\mathbf{R} \boldsymbol{\beta}=r$ where $\mathbf{R}=\left[\begin{array}{ll}2 & -1\end{array}\right]$ and $r=0$. Then

$$
\begin{aligned}
\mathrm{W} & =(\mathbf{R} \widehat{\boldsymbol{\beta}}-r)^{\prime}(\mathbf{R} \widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}] \mathbf{R})^{-1}(\mathbf{R} \widehat{\boldsymbol{\beta}}-r) \\
& =5 \times\left(\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right)^{-1} \times 5 \\
& =5 \times\left(\left[\begin{array}{ll}
5 & 0
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right)^{-1} \times 5=5 \times(10)^{-1} \times 5=2.5 .
\end{aligned}
$$

Since $W=2.5<\chi_{.05 ; 1}^{2}=z_{.025}^{2}=1.96^{2}=3.84$ we do not reject H_{0}.
Or can use $\sqrt{W}=t=\sqrt{2.5}<z_{0.05}=1.96$ and we do not reject H_{0}.
(c) Assume instruments \mathbf{Z} such that $\mathrm{E}[\mathbf{u} \mid \mathbf{Z}]=\mathbf{0}$ and use the IV estimator $\widehat{\boldsymbol{\beta}}_{\text {IV }}=\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}$.
(d) $\ln L(\boldsymbol{\beta})=\ln f(\mathbf{y})=-\frac{N}{2} \ln 2 \pi-\frac{1}{2} \ln |\boldsymbol{\Sigma}|-\frac{1}{2}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$. So

$$
\frac{\partial \ln L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=-\frac{1}{2}\left[\frac{\partial}{\partial \boldsymbol{\beta}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right]=-\frac{1}{2}\left[-2 \mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{y}+2 \mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X} \boldsymbol{\beta}\right] .
$$

Setting to zero: $\mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{y}-\mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X} \boldsymbol{\beta}=\mathbf{0} \Rightarrow \widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{y}$.

$$
\widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}]=-\left\{\mathrm{E}\left[\frac{\partial^{2} \ln L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}\right]\right\}^{-1}=-\left\{\mathrm{E}\left[-\frac{1}{2} 2 \mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right]\right\}^{-1}=\left(\mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1}
$$

(e) FGLS is OLS of $\left(y_{i} / \sqrt{z_{i}}\right)$ on $\left(\mathbf{x}_{i} / \sqrt{z_{i}}\right)$.
(f) Use Cochrane-Orcutt.

OLS of y_{t} on \mathbf{x}_{t} gives \widehat{u}_{t}.
OLS of \widehat{u}_{t} on \widehat{u}_{t-1} gives $\widehat{\rho}$ where $\operatorname{AR}(1)$ error process is $u_{t}=u_{t-1}+\varepsilon_{t}$.
OLS of $y_{t}-\widehat{\rho} y_{t-1}$ on $\mathbf{x}_{t}-\widehat{\rho} \mathbf{x}_{t-1}$ gives asymptotically efficient $\widehat{\boldsymbol{\beta}}$.
4. (a) We have $\widehat{\boldsymbol{\beta}}=\left(\mathbf{Z}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A}(\mathbf{X} \boldsymbol{\beta}+\mathbf{u})=\boldsymbol{\beta}+\left(\mathbf{Z}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{u}$.

So $\mathrm{E}[\widehat{\boldsymbol{\beta}}]=\boldsymbol{\beta}+\mathrm{E}\left[\left(\mathbf{Z}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{u}\right]=\boldsymbol{\beta}+\left(\mathbf{Z}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A E}[\mathbf{u}]=\boldsymbol{\beta}$, as $\mathrm{E}[\mathbf{u}]=\mathbf{0}$.
And $\mathrm{V}[\widehat{\boldsymbol{\beta}}]=\mathrm{E}\left[(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right]=\mathrm{E}\left[\left(\left(\mathbf{Z}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{u}\right) \times\left(\left(\mathbf{Z}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{u}\right)^{\prime}\right]$

$$
=\left(\mathbf{Z}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A E}\left[\mathbf{u u}^{\prime}\right] \mathbf{Z} \mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{A} \mathbf{Z}\right)^{-1}=\left(\mathbf{Z}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A} \mathbf{Z}\left(\mathbf{X}^{\prime} \mathbf{A} \mathbf{Z}\right)^{-1} .
$$

(b) We have

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}= & \boldsymbol{\beta}+\left(N^{-1} \mathbf{Z}^{\prime} \mathbf{A X}\right)^{-1} N^{-1} \mathbf{Z}^{\prime} \mathbf{A u} \\
& \xrightarrow{p} \boldsymbol{\beta}+\left(\operatorname{plim} N^{-1} \mathbf{Z}^{\prime} \mathbf{A X}\right)^{-1} \operatorname{plim} N^{-1} \mathbf{Z}^{\prime} \mathbf{A u} \\
& \xrightarrow{p} \boldsymbol{\beta} \text { if first plim is finite and second is zero. }
\end{aligned}
$$

Second is expected to be zero as if a LLN can be applied then

$$
\operatorname{plim} N^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{u}=\lim N^{-1} \mathrm{E}\left[\mathbf{Z}^{\prime} \mathbf{A u}\right]=\mathbf{0}
$$

as $\mathrm{E}_{\mathbf{Z}, \mathbf{u}}\left[\mathbf{Z}^{\prime} \mathbf{A u}\right]=\mathrm{E}_{\mathbf{Z}}\left[\mathrm{E}_{\mathbf{u} \mid \mathbf{Z}}\left[\mathbf{Z}^{\prime} \mathbf{A} \mathbf{u} \mid \mathbf{Z}\right]=\mathrm{E}_{\mathbf{Z}}\left[\mathbf{Z}^{\prime} \mathbf{A} \times \mathbf{0}\right]\right.$ since $\mathrm{E}_{\mathbf{u} \mid \mathbf{Z}}[\mathbf{u} \mid \mathbf{Z}]=\mathbf{0}$ is given and \mathbf{A} is nonstochastic.
(c) We have

$$
\begin{aligned}
\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})= & \left(N^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \frac{1}{\sqrt{N}} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{u} \\
& \xrightarrow{d}\left(\operatorname{plim} N^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \times \mathcal{N}\left[\mathbf{0}, \operatorname{plim} N^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A Z}\right] \\
& \xrightarrow{d} \mathcal{N}\left[\mathbf{0}, \quad\left(\operatorname{plim} N^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X}\right)^{-1} \operatorname{plim} N^{-1} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A Z}\left(\operatorname{plim} N^{-1} \mathbf{X}^{\prime} \mathbf{A} \mathbf{Z}\right)^{-1}\right]
\end{aligned}
$$

where we use $\frac{1}{\sqrt{N}} \mathbf{Z}^{\prime} \mathbf{A u}$ has mean $\mathbf{0}$ and variance $\mathrm{E}_{\mathbf{Z}}\left[\frac{1}{N} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{\Sigma} \mathbf{A Z}\right]$ and assume that a CLT can be applied so that $\mathrm{V}\left[\frac{1}{\sqrt{N}} \mathbf{Z}^{\prime} \mathbf{A} \mathbf{u}\right]^{-1 / 2} \frac{1}{\sqrt{N}} \mathbf{Z}^{\prime} \mathbf{A u} \xrightarrow{d} \mathcal{N}[\mathbf{0}, \mathbf{I}]$.
(d) Use

$$
\mathrm{V}[\widehat{\boldsymbol{\beta}}]=\mathcal{N}\left[\boldsymbol{\beta},\left(\mathbf{Z}^{\prime} \mathbf{A X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A} \operatorname{Diag}\left[\widehat{u}_{i}^{2}\right] \mathbf{A Z}\left(\mathbf{X}^{\prime} \mathbf{A Z}\right)^{-1}\right], \text { where } \widehat{u}_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}} .
$$

5.(a) avg_ed, pct_el, yr_rnd, and pct_emer are statistically significance at 5 percent. All have expected sign (though for yr _rnd it is perhaps not clear a priori.)
[Aside: Year-round schools are intended to give better results due to shorter summer break, though there are other reasons for believing the opposite effect may hold.]
(b) Test $H_{0}: \beta_{\text {avg_ed }}<50$ against $H_{0}: \beta_{\text {avg_ed }} \geq 50$.
$t=(73.8491-50) / 1.87=12.75>z_{.05}=1.645$. So reject H_{0}.
Conclude that one more year of parent education is associated with a more than 50 point rise in school API.
(c) The full model as \bar{R}^{2} is higher.
(d) After doing the full regression give command
test pct_meal pct_el yr_rnd pct_cred pct_emer
(e) Yes. The heteroskedasticity test clearly rejects the null hypothesis of homoskedastic errors. [Though in output not give it actually turns out that for these data , robust makes little difference].
(f) By far the most important determinant is parental education.
R^{2} is already 0.835 with just this as a regressor, rising somewhat to 0.853 when all the other regressors are included.
(g) This gives $\widehat{E}\left[\mathbf{y} \mid \mathbf{x}=\mathbf{x}_{f}\right]$, the predicted value of $\mathrm{E}\left[\mathbf{y} \mid \mathbf{x}=\mathbf{x}_{f}\right]$ and its standard error, where prediction is at avg_ed=12,pct_meal=20, pct_el=20, yr_rnd=0.03, pct_cred=80, pct_emer=10.
[It also gives $\widehat{\mathbf{y}} \mid \mathbf{x}=\mathbf{x}_{f}$ but not its standard error since that additionally needs to allow for estimating the error by zero].

	Exam $/ 50$			Exam $/ 50$	
$75 t h$ percentile	$40(80 \%)$			B+ 29 and above	
Median	36	(72%)	A 39 and above	B	24 and above
$25 t h$ percentile	$34(68 \%)$	A- 34 and above			

Comments

Question 1 was done poorly even though very straightforward.
Question 2 was done poorly. Many missed that degrees of freedom differ in the two models, since there were q restrictions. Only one person got the conclusion that if \bar{R}^{2} does not change then $F=1$ (and hence if one restriction $t=1$). This means that choosing a larger model because \bar{R}^{2} increases will lead to larger models than if we test at critical value 0.05 . This question should be answerable given good knowledge of undergraduate econometrics (and did not use matrix algebra).

Question 3 was done well, aside from part (a) and in part (b) there were many errors though correct basic approach.

Question 4 was done well. In part (d) there was confusion about what exactly "White" standard errors do.

Question 5 was done well aside from part (g), though note that a "fundamental" conclusion is not many lines long with several conclusions.

