1.(a) We have $\widehat{y}=1.0+0.5 x$ giving $\widehat{y}_{1}=1, \widehat{y}_{2}=2$ and $\widehat{y}_{3}=3$.
$s^{2}=\frac{1}{n-2} \sum_{i}\left(y_{i}-\widehat{y}_{i}\right)^{2}=(1-0)^{2}+(2-4)^{2}+(3-2)^{2}=1+4+1=6$. So $s=\sqrt{6}=2.4495$.
(b) $s_{\widehat{\beta}_{2}}^{2}=s^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=6 /\left[(0-2)^{2}+(2-2)^{2}+(4-2)^{2}\right]=6 / 8=0.75$. So $s_{\widehat{\beta}_{2}}=\sqrt{0.75}=0.8660$.
(c) A $95 \% \mathrm{CI}$ is $\widehat{\beta}_{2} \pm t_{n-2 ; 0.025} \times s_{\widehat{\beta}_{2}}=0.75 \pm 12.706 \times 0.8660=0.50 \pm 11.00=(-10.5,11.5)$.
(d) $R^{2}=1-\operatorname{ResSS} / \operatorname{TotSS}=1-6 / 8=0.25$, since ResSS $=\sum_{i}\left(y_{i}-\widehat{y}_{i}\right)^{2}=6$ from part (a) and $\operatorname{TotSS}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\left[(0-2)^{2}+(4-2)^{2}+(2-2)^{2}\right]=8$.
2.(a) Here

$$
\begin{aligned}
\mathbf{b}^{\prime} \mathbf{A} \mathbf{b} & =\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]^{\prime}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]^{\prime}\left[\begin{array}{l}
a_{11} b_{1}+a_{12} b_{2} \\
a_{21} b_{1}+a_{22} b_{2}
\end{array}\right] \\
& =b_{1} a_{11} b_{1}+b_{1} a_{12} b_{2}+b_{2} a_{21} b_{1}+b_{2} a_{22} b_{2} .
\end{aligned}
$$

(b) By direct differentiation $\partial \mathbf{b}^{\prime} \mathbf{A b} / \partial b_{1}=2 a_{11} b_{1}+a_{12} b_{2}+a_{21} b_{1}$ and $\partial \mathbf{b}^{\prime} \mathbf{A b} / \partial b_{2}=a_{12} b_{1}+a_{21} b_{1}+2 a_{22} b_{2}$.
(c) Now $a_{12}=a_{21}$ so $\partial \mathbf{b}^{\prime} \mathbf{A b} / \partial b_{1}=2 a_{11} b_{1}+2 a_{12} b_{2}$ and $\partial \mathbf{b}^{\prime} \mathbf{A b} / \partial b_{2}=2 a_{21} b_{1}+2 a_{22} b_{2}$. Stacking

$$
\frac{\partial \mathbf{b}^{\prime} \mathbf{A} \mathbf{b}}{\partial \mathbf{b}}=\left[\begin{array}{l}
2 a_{11} b_{1}+2 a_{12} b_{2} \\
2 a_{21} b_{1}+2 a_{22} b_{2}
\end{array}\right]=2 \mathbf{A b}
$$

given $\mathbf{A b}$ which is the last matrix in the second line of the part (a) answer.
3. Aside: derivation of the transformed model (not necessary)

$$
\begin{aligned}
\mathbf{y} & =\beta_{1} \mathbf{l}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\mathbf{u}=\beta_{1} \mathbf{l}+\mathrm{l}_{2}^{\prime} \boldsymbol{\beta}_{2}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}-\overline{\mathbf{x}}_{2}^{\prime} \boldsymbol{\beta}_{2}+\mathbf{u} \\
& =\left(\beta_{1}+\overline{\mathbf{x}}_{2}^{\prime} \boldsymbol{\beta}_{2}\right) \mathbf{l}+\left(\mathbf{X}_{2}-\overline{\mathbf{x}}_{2}^{\prime}\right) \boldsymbol{\beta}_{2}+\mathbf{u} \\
& =\alpha_{1} \mathbf{l}+\mathbf{X}_{2}^{*} \boldsymbol{\beta}_{2}+\mathbf{u}, \quad \text { where } \alpha_{1}=\beta_{1}+\overline{\mathbf{x}}_{2}^{\prime} \boldsymbol{\beta}_{2}
\end{aligned}
$$

(a) We have

$$
\mathbf{y}=\left[\begin{array}{ll}
\mathbf{l} & \mathbf{X}_{2}^{*}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\boldsymbol{\beta}_{2}
\end{array}\right]+\mathbf{u}=\mathbf{Z} \gamma+\mathbf{u}
$$

(b) Intuitively the sum of deviations from a mean is zero. Formally:

$$
\mathbf{l}^{\prime} \mathbf{X}_{2}^{*}=\mathbf{l}^{\prime}\left(\mathbf{X}_{2}-\mathbf{l}_{2}^{\prime}\right)=\mathbf{l}^{\prime} \mathbf{X}_{2}-\mathbf{l}^{\prime} \overline{\mathbf{x}}_{2}^{\prime}=N \overline{\mathbf{x}}_{2}^{\prime}-N \overline{\mathbf{x}}_{2}^{\prime}=\mathbf{0},
$$

where we used $\mathbf{l}^{\prime} \mathbf{X}_{2}=N \overline{\mathbf{x}}_{2}^{\prime}$, since $\overline{\mathbf{x}}_{2}^{\prime}=\frac{1}{N} \mathbf{l}^{\prime} \mathbf{X}_{2}$, and $\mathbf{l}^{\prime} \mathbf{l}=N$.
(c) The usual $\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}$ becomes

$$
\begin{aligned}
{\left[\begin{array}{c}
\widehat{\alpha}_{1} \\
\widehat{\boldsymbol{\beta}}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathbf{l}^{\prime} \mathbf{l} & \mathbf{X}_{2}^{* \prime} \mathbf{l} \\
\mathbf{l}^{\prime} \mathbf{X}_{2}^{* \prime} & \mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{l}^{\prime} \mathbf{y} \\
\mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right]=\left[\begin{array}{cc}
N & \mathbf{0} \\
\mathbf{0} & \mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{l}^{\prime} \mathbf{y} \\
\mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{N} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{l}^{\prime} \mathbf{y} \\
\mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{N} \mathbf{l}^{\prime} \mathbf{y} \\
\left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1} \mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
\bar{y} \\
\left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1} \mathbf{X}_{2}^{* \prime} \mathbf{y}
\end{array}\right]
\end{aligned}
$$

(d) And the usual $s^{2}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1}$ becomes

$$
\widehat{\mathrm{V}}\left[\begin{array}{l}
\widehat{\alpha}_{1} \\
\widehat{\boldsymbol{\beta}}_{2}
\end{array}\right]=s^{2}\left[\begin{array}{cc}
\mathbf{l}^{\prime} \mathbf{l} & \mathbf{X}_{2}^{* \prime} \mathbf{l} \\
\mathbf{l}^{\prime} \mathbf{X}_{2}^{* \prime} & \mathbf{X}_{2}^{* *} \mathbf{X}_{2}^{*}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{l}^{\prime} \mathbf{l} & \mathbf{0} \\
\mathbf{0} & \mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}
\end{array}\right]^{-1}=s^{2}\left[\begin{array}{cc}
\frac{1}{N} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1}
\end{array}\right] .
$$

4.(a) Now

$$
\begin{aligned}
\widehat{y}_{f} & =\widehat{\alpha}_{1}+\mathbf{x}_{2 f}^{* \prime} \widehat{\boldsymbol{\beta}}_{2}=\left[\begin{array}{ll}
1 & \mathbf{x}_{2 f}^{* \prime}
\end{array}\right]\left[\begin{array}{l}
\widehat{\alpha}_{1} \\
\widehat{\boldsymbol{\beta}}_{2}
\end{array}\right]=\mathbf{c}^{\prime} \widehat{\gamma} \\
\widehat{\mathrm{V}}\left[\widehat{y}_{f}\right] & =\left[\begin{array}{ll}
1 & \mathbf{x}_{2 f}^{* \prime}
\end{array}\right] \widehat{\mathrm{V}}\left[\begin{array}{c}
\widehat{\alpha}_{1} \\
\widehat{\boldsymbol{\beta}}_{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
\mathbf{x}_{2 f}^{*}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & \mathbf{x}_{2 f}^{* \prime}
\end{array}\right] s^{2}\left[\begin{array}{cc}
\frac{1}{N} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{X}_{2}^{*} \mathbf{X}_{2}^{*}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
1 \\
\mathbf{x}_{2 f}^{*}
\end{array}\right]=s^{2}\left[\frac{1}{N}+\mathbf{x}_{2 f}^{* \prime}\left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1} \mathbf{x}_{2 f}^{*}\right] .
\end{aligned}
$$

(b) A 95 percent confidence interval for \widehat{y}_{f} as a prediction of $\mathrm{E}\left[y \mid \mathbf{x}_{2}=\mathbf{x}_{2 f}\right]$ is

$$
\widehat{y}_{f} \pm t .025 ; N-k \times s \sqrt{\frac{1}{N}+\mathbf{x}_{2 f}^{* \prime}\left(\mathbf{X}_{2}^{* \prime} \mathbf{X}_{2}^{*}\right)^{-1} \mathbf{x}_{2 f}^{*}} .
$$

(c) This is minimized when $\mathbf{x}_{2 f}=\overline{\mathbf{x}}_{2}$, so that $\mathbf{x}_{2 f}^{*}=\mathbf{0}$.
[Then the 95% confidence interval is simply $\widehat{y}_{f} \pm t_{.025 ; N-k} \times s / \sqrt{N}$.]
5. We have $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\mathbf{u})=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}$.
(a) So

$$
\mathrm{E}[\widehat{\boldsymbol{\beta}}]=\boldsymbol{\beta}+\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}\right]=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathrm{E}[\mathbf{u}]=\boldsymbol{\beta} \text { as } \mathrm{E}[\mathbf{u}]=\mathbf{0} .
$$

(b) And

$$
\begin{aligned}
\mathrm{V}[\widehat{\boldsymbol{\beta}}] & =\mathrm{E}\left[(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\right] \\
& =\mathrm{E}\left[\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}\right)\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}\right)^{\prime}\right] \\
& =\mathrm{E}\left[\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u} \mathbf{u}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]\right. \\
& \left.=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathrm{E}\left[\mathbf{u} u^{\prime}\right] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

(c) $\widehat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}$ is a linear combination of normals, so is normal distributed.
6.(a) Statistically significant at 5% are exper, educ, and nonwhite, as $p<0.05$.
(b) Jointly statistically significant at 5% as overall $F=13.71$ has $p=0.000<0.05$.
(c) Test $H_{0}: \beta_{3}=0$ and $\beta_{4}=0$ (where I call the intercept β_{1}). This is $\mathbf{R} \boldsymbol{\beta}=\mathbf{r}$ where

$$
\mathbf{R}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \text { and } \mathbf{r}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Form the Wald test statistic W and reject H_{0} if $\mathrm{W}>F_{0.05}(2,175)$ where

$$
\mathrm{W}=(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r})\left[\mathbf{R} \widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}] \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r})
$$

(d) Test $H_{0}: \beta_{\text {educ }}=0.10$ against $\beta_{\text {educ }} \neq 0.10$.

$$
t=\frac{\widehat{\beta}-\beta^{*}}{s_{\widehat{\beta}}}=\frac{0.08369-0.10}{0.01244}=\frac{-0.01631}{0.01244}=-1.311 .|t|<t_{.025}(175) \simeq z_{.025}=1.96
$$

Do not reject H_{0}. Conclude that the claim is supported.
Exam / $50 \quad$ Exam / 50
75th percentile 46.5 (93\%)
Median 39 (78\%)
25th percentile 33 (66\%)
A 43 and above B 21 and above
A- 35.5 and above
Weakest answers (in order): 6(d), 6(c), 3 and $4,5(\mathrm{c}), 1$ (details).

