
Review of Bivariate Regression

A.Colin Cameron
Department of Economics

University of California - Davis
accameron@ucdavis.edu

October 27, 2006

Abstract

This provides a review of material covered in an undergraduate
class on OLS regression with a single regressor. It presents introduc-
tory material that is assumed known in my Economics 240A course on
multivariate regression using matrix algebra.
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1 Introduction

Bivariate data analysis considers the relationship between two vari-
ables, such as education and income or house price and house size, rather
than analyzing just one variable in isolation.

In principle the two variables should be treated equally. In practice one
variable is often viewed as being caused by another variable. The standard
notation used follows the notation of mathematics, where y is a function
of x. Thus the variable y is explained by the variable x. [It is important

2



Sale Price Square feet
375000 3300
340000 2400
310000 2300
279900 2000
278500 2600
273000 1900
272000 1800
270000 2000
270000 1800
258500 1600
255000 1500
253000 2100
249000 1900
245000 1400
244000 2000
241000 1600
239500 1600
238000 1900
236500 1600
235000 1600
235000 1700
233000 1700
230000 2100
229000 1700
224500 2100
220000 1600
213000 1800
212000 1600
204000 1400

Figure 1: House Sale Price in dollars and House Size in square feet for 29
houses in central Davis.

to note, however, that without additional information the roles of the two
variables may in fact be reversed, so that it is x that is being explained by
y. Correlation need not imply causation.]

This chapter introduces bivariate regression, reviewing an undergraduate
course. Some of the results are just stated, with proof left for the multiple
regression chapter.

2 Example: House Price and Size

Figure 1 presents data on the price (in dollars) and size (in square feet) of
29 houses sold in central Davis in 1999. The data are ordered by decreasing
price, making interpretation easier.

It does appear that higher priced houses are larger. For example, the
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Figure 2: House Sale Price and House Size: Two-way Scatter Plot and
Regression Line for 29 house sales in central Davis in 1999.

�ve most expensive houses are all 2,000 square feet or more, while the four
cheapest houses are all less than 1,600 square feet in size.

Figure 2 provides a scatterplot of these data. Each point represents a
combination of sale price and size of house. For example, the upper right
point is for a house that sold for $375,000 and was 3,400 square feet in size.
The scatterplot also suggests that larger houses sell for more.

Figure 2 also includes the line that best �ts these data, based on the
least squares regression method explained below. The estimated regression
line is

y = 115017 + 73:77x;

where y is house sale price and x is house size in square feet.
A more complete analysis of this data using the Stata command regress

yields the output

. regress salepric sqfeet

Source | SS df MS Number of obs = 29
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-------------+------------------------------ F( 1, 27) = 43.58
Model | 2.4171e+10 1 2.4171e+10 Prob > F = 0.0000

Residual | 1.4975e+10 27 554633395 R-squared = 0.6175
-------------+------------------------------ Adj R-squared = 0.6033

Total | 3.9146e+10 28 1.3981e+09 Root MSE = 23551

------------------------------------------------------------------------------
salepric | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
sqfeet | 73.77104 11.17491 6.60 0.000 50.84202 96.70006
_cons | 115017.3 21489.36 5.35 0.000 70924.76 159109.8

------------------------------------------------------------------------------

The bottom results on the slope coe¢ cient are of most interest. A one
square foot increase in house size is associated with a $73:77 increase in
price. This estimate is reasonably precise, with a standard error of $11:17
and a 95% con�dence interval of ($50:84, $96:70). A test of the hypothesis
that house size is not associated with house price (i.e. the slope coe¢ cient is
zero) is resoundingly rejected as the p-value (for a two-sided test) is 0:000.

The top results include a measure of goodness of �t of the regression,
with R2 of 0:6175.

The remainder of this review answers questions such as (1) How is the
estimated line obtained? (2) How do we interpret the estimates? (3) How
do allow for a di¤erent sample of house sales leading to di¤erent estimates?

3 Ordinary Least Squares Regression

Regression is the data analysis tool most used by economists.

3.1 Regression Line

The regression line from regression of y on x is denoted

by = b1 + b2x; (1)

where

� y is called the dependent variable

� by is the predicted (or �tted) dependent variable
5



� x is the independent variable or explanatory variable or regressor
variable or covariate.

� b1 is the estimated intercept (on the y-axis)

� b2 is the estimated slope coe¢ cient

Later on for multiple regression we will denote the estimates as b�1 andb�2, rather than b1 and b2.
3.2 Interpretation

Interest lies especially in the slope coe¢ cient. Since

dby
dx
= b2; (2)

the slope coe¢ cient b2 is easily interpreted as the increase in the predicted
value of y when x increases by one unit.

For example, for the regression of house price on size, y = 115017 +
73:77x, so house price is predicted to increase by 73:77 units when x increases
by one unit. The units of measurement for this example are dollars for price
and square feet for size. So equivalently a one square foot increase in house
size is associated with a $73:77 increase in price.

3.3 Least Squares Method

The regression line is obtained by choosing that line closest to all of the data
points, in the following sense.

De�ne the residual e to be the di¤erence between the actual value of
y and the predicted value by. Thus the residual

e = y � by:
This is illustrated in Figure 3.

For the �rst observation, with subscript 1, the residual is e1 = y1 � by1,
for the second observation the residual is e2 = y2� by2, and so on. The least
squares method chooses values of the intercept b1 and slope b2 of the line
to make as small as possible the sum of the squared residuals, i.e.
minimize e21 + e

2
2 + � � � + e2n. For a representative observation, say the ith

observation, the residual is given by

ei = yi � byi (3)

= yi � b1 � b2xi:
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 * * denotes the
observation (y, x)

The length of the dashed
line is the error e

xbbŷ 21 +=

Figure 3: Least squares residual. The graph gives one data point, denoted *,
and the associated residual e which is the length of the vertical dashed line
between * and the regression line. Here the residual is negative since y � by
is negative. The regression line is the line that makes the sum of squared
residuals over all data points as small as possible.

Given a sample of size n with data (y1; x1); :::; (yn; xn), the ordinary least
squares (OLS) method chooses b1 and b2 to minimize the sum of squares of
the residuals. Thus b1 and b2 minimize the sum of the squared residuals

nX
i=1

e2i =
nX
i=1

(yi � byi)2 = nX
i=1

(yi � b1 � b2xi)2: (4)

This is a calculus problem. Di¤erentiating with respect to b1 and b2
yields two equations in the two unknowns b1 and b2

�2
nX
i=1

(yi � b1 � b2xi) = 0 (5)

�2
nX
i=1

xi(yi � b1 � b2xi) = 0: (6)

These are called the least squares normal equations.
Some algebra yields the least squares intercept as

b1 = �y � b2�x; (7)
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and the least squares slope coe¢ cient as

b2 =

Pn
i=1(xi � �x)(yi � �y)Pn

i=1(xi � �x)2
: (8)

We now obtain these results. First, manipulating (5) yieldsPn
i=1(yi � b1 � b2xi) = 0

)
Pn
i=1 yi �

Pn
i=1 b1 � b2

Pn
i=1 xi = 0

) n�y � nb1 � b2n�x = 0
) �y � b1 � b2�x = 0;

so that b1 = �y � b2�x, as stated in (7). Second, plugging (7) into (6) yieldsPn
i=1 xi(yi � [�y � b2�x]� b2xi) = 0

)
Pn
i=1 xi(yi � �y) = b2

Pn
i=1 xi(xi � �x)

)
Pn
i=1(xi � �x)(yi � �y) = b2

Pn
i=1(xi � �x)(xi � �x);

and solving for b2 yields (8). Note that the last line follows since in general

nX
i=1

(xi��x)(zi��z) =
nX
i=1

xi(zi��z)��x
nX
i=1

(zi��z) =
nX
i=1

xi(zi��z) as
nX
i=1

(zi��z) = 0:

The second-order conditions to ensure a minimum rather than a maximum
will be veri�ed in matrix case.

3.4 Prediction

The regression line can be used to predict values of y for given values of x.
For x = x� the prediction is

by = b1 + b2x�: (9)

For example, for the house price example we predict that a house of size
2000 square feet will sell for $263; 000, since by ' 115000+74�2000 = 263000.

Such predictions are more reliable when forecasts are made for x values
not far outside the range of the x values in the data. And the better the
�t of the model, that is the higher the R-squared, the better will be the
forecast. Prediction can be in-sample, in which case byi = b1 + b2xi is
a prediction of yi, i = 1; :::; n. If prediction is instead out-of-sample it
becomes increasingly unreliable the further the prediction point x� is from
the sample range of the x values used in the regression to estimate b1 and
b2.
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Figure 4: Total Sum of Squares: Variability around the sample mean.

3.5 R-Squared for Goodness of Fit

The regression line does not �t perfectly. The standard measure of closeness
of the data points to the �tted regression line is R-squared, also called the
coe¢ cient of determination. This is a number between 0 and 1 that
indicates the proportion of the variability in y, about its sample mean �y,
explained by regression on x. If R2 = 1 then all the variability is explained
and the �t is perfect. If R2 = 0 there is no explanation at all.

We begin by de�ning measures of variability for the data y before and
after regression. For variability in y before regression we use the total sum
of squares,

TSS =
nX
i=1

(yi � �y)2:

This is the sum of squared deviations of the data points around the sample
mean �y, as displayed in Figure 4.

As measure of the variability in y after regression we use the error sum
of squares

ESS =
nX
i=1

(yi � byi)2;
This is the sum of squared deviations of the data points around the value byi
predicted by the regression line, as displayed in Figure 5. The error sum of
squares is also called the residual sum of squares.
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Figure 5: Error Sum of Squares: Variability around the regression line

The R-squared is de�ned as

R2 = 1� Error SS
Total SS

= 1�
Pn
i=1(yi � byi)2Pn
i=1(yi � �y)2

: (10)

Clearly R2 = 1 if the model �t is perfect as then Error SS = 0.
It can be shown thatR2 can be equivalently de�ned in terms of deviations

of the �tted values from the sample mean, the regression sum of squares,
compared to deviations of the data from the sample mean (provided the
model includes an intercept). Thus

R2 =
Regression SS
Total SS

=

Pn
i=1(byi � �y)2Pn
i=1(yi � �y)2

: (11)

The regression sum of squares is also called the explained sum of squares.
This leads to the interpretation of R2 giving the proportion of the variability
in y explained by regression on x. Equivalently, since s2y =TSS=(n � 1),
the R2 gives the fraction of the variance explained by regression on x, and
100�R2 gives the percentage of the variance of y explained by variation in
x.

Output from the Stata command regress given earlier includes Regression
SS (called Model SS), error SS (called Residual SS) and total SS. It yields

R2 = 1� 1:4975� 10
10

3:9146� 1010 = 0:6175:

Thus 61:75 percent of the variation in house price is associated with variation
in house size. This is viewed as a good �t, though still with room for
improvement as can be seen from Figure 2.
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A variation on R2 is �R2, the adjusted R2, which is de�ned later.

3.6 Correlation

A standard way to measure association between x and y, one that predates
regression, is the correlation coe¢ cient.

The sample covariance between x and y is de�ned to be

sxy =
1

n� 1

nX
i=1

(xi � �x)(yi � �y):

This statistic is positive if x and y tend to move together in the same direc-
tion, and negative if x and y tend to move together in the opposite direction.

To see this, note that sxy > 0 if the cross-product (xi � �x)(yi � �y) is
mostly positive. This happens if most observations have both (xi � �x) > 0
and (yi � �y) > 0 or both (xi � �x) < 0 and (yi � �y) < 0. This is positive
association since above-average values of x tend to be associated with above-
average values of y, and below-average values of x tend to be associated with
below-average values of y.

The situation is illustrated in Figure 6 for the house price and house size
data. The vertical line is �x = 1883, and the horizontal line is �y = 253; 910.
The top-right quadrant, denoted (+), has positive value of (xi � �x)(yi � �y)
since in this quadrant (xi � �x) > 0 and (yi � �y) > 0. Similar considerations
lead to the signs in the other three quadrants. The covariance is positive, as
most of the observations lie in the two positive quadrants. In fact, for these
data sxy = 11298109:39 > 0.

The sample covariance between x and itself equals the sample variance
of x, since sxx = 1

n�1
P
i(xi � �x)2 = s2x. Similarly syy = s2x.

A weakness of the sample covariance is that its magnitude its not easily
interpreted. For the house price and house size data sxy = 11; 298; 109:39.
This is a large number, but it does not necessarily imply that the association
between x and y is large since sxy is not scale-free.

The sample correlation coe¢ cient is a transformation of the sample
covariance that is a standardized or unitless measure of association between
x and y. It is de�ned by

rxy =

Pn
i=1(xi � �x)(yi � �y)pPn

i=1(xi � �x)2 �
Pn
i=1(yi � �y)2

=
sxyp

sxx � syy
;
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Figure 6: Sample Covariance Computation.

where the second second equality follows by division of both numerator and
denominator by (n� 1).

The advantage of the correlation coe¢ cient is that it can be shown to
bounded between �1 and 1. The correlation coe¢ cient equals one if x and
y move exactly together in the same direction, and it equals minus one if x
and y move exactly together in the opposite direction. In summary

rxy = 1 perfect positive correlation
0 < rxy < 1 positive correlation
rxy = 0 no correlation

�1 < rxy < 0 negative correlation
rxy = �1 negative correlation

The correlation coe¢ cient treats x and y symmetrically. It is clear from
the de�nition that rxy = ryx. And while the correlation coe¢ cient detects
association, it is neutral on whether it is x that is causing y or y that is
causing x.

For the house data rxy = 0:7857, so there is high positive association
between house sale price and house size.
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3.7 Correlation versus Regression

The slope coe¢ cient can be re-expressed in terms of the sample correlation
coe¢ cient as

b2 = rxy �
r
syy
sxx
:

Thus if there is positive correlation, i.e. rxy > 0, then the slope coe¢ cient
b2 is positive, and similarly rxy < 0 implies a negative slope coe¢ cient. So
the sample correlation coe¢ cient and the slope coe¢ cient always lead to the
same conclusion regarding whether the association between the two variables
is positive or negative. In economic data analysis regression is the most
commonly-used method. In some other disciplines correlation analysis is
more commonly used. The two methods lead to exactly the same conclusions
regarding association between x and y.

It can be shown that
R2 = r2xy;

i.e. R2 equals the square of the sample correlation coe¢ cient between y and
x. Thus one by-product of regression analysis is to obtain the squared sample
correlation coe¢ cient. The de�nition of R2 in terms of sums of squares,
rather than in terms of the correlation coe¢ cient, has the advantage of an
easy physical interpretation. R2 can also be easily extended to regression
with additional regressors.

4 Moving from Sample to Population

Regression curve �tting is relatively easy. Now we move on to the more
di¢ cult topic of extrapolation from the sample to the population.

Recall that in univariate statistics the sample mean �x was used to make
inference about the population mean �. Similarly the sample �tted regres-
sion line b1 + b2x can be used to make inference about the true population
line, which is de�ned below and is denoted �1 + �2x.

Di¤erent samples will lead to di¤erent �tted regression lines, due to
di¤erent random departures in the data from the line. If the slope is greater
than zero in our single sample, suggesting that y increases as x increases,
does this necessarily hold in the population? Or is it just this particular
sample that has this relationship?

For example, interest may lie in making statements about the relation-
ship between earnings and education for all 30-year old males in the United
States, given a sample of two hundred observations. If we observe a positive
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association in our sample, how con�dent can we be that such a relationship
really exists in the population, and is not just an artifact of the particular
sample drawn?

4.1 Population and Sample

Statistical inference is based on sampling theory that is in turn based on
assumptions about the population, or equivalently about the process gener-
ating the data. Without such assumptions statistical inference is not pos-
sible. And with di¤erent assumptions the statistical inference may need to
be adapted.

4.2 Population Assumptions

We suppose that, given x, the data on y are generated by the model

y = �1 + �2x+ u: (12)

There are two components. First a population line with formula �1+�2x.
The parameters �1 and �2, where � is the Greek letter beta, denote unknown
population values of the intercept and slope. Second, randomness is in-
troduced through an error term or disturbance that is denoted u (some
authors instead use ", the Greek letter epsilon).

The OLS coe¢ cients b1 and b2 (later denoted b�1 and b�2) are sample
estimates of the population parameters �1 and �2. This is directly analogous
to the univariate case where �x denotes the sample estimate of the population
mean �.

For simplicity we assume that the regressors x are nonstochastic
(i.e. �xed not random). This assumption is relaxed for multiple regression.
The following population assumptions are made:

1. The population model is the linear model, so yi = �1 + �2xi + ui:

2. There is variation in the x variables, so
P
i(xi � �x)2 6= 0.

3. The error has mean zero: E[ui] = 0.

4. The errors for di¤erent observations have constant variance V[ui] = �2u:

5. The errors for di¤erent observations are independent Cov[ui; uj ] = �2u:

6. The errors are normally distributed.
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More succinctly, assumptions 3-6 together imply that the errors are in-
dependently and identically normally distributed with mean 0 and variance
�2u, or

ui � N [0; �2u]: (13)

Adding in assumption 1 we have that the y are independently and identically
distributed with

yi � N [�1 + �2xi; �2u]: (14)

The setup is therefore very similar to that for univariate statistical in-
ference. The one change is that the population mean of y is no longer a
constant �. Instead it varies with the value of x. Formally, the population
regression line or the conditional mean of y given x is

E[yijxi] = �1 + �2xi: (15)

E[yjx] varies with x, whereas assumption 4 implies that the conditional
variance of y given x is a constant �2u which does not vary with x. In the
special case that �2 = 0 the population model simpli�es to that used for
univariate statistics, with � = �1.

4.3 Example of Population versus Sample

As an example, let the data generating process be y = 1 + 2x + " where
" � N [0; 4]. Suppose x1 = 1 and that the �rst draw from the N [0; 4]
distribution is "1 = �4:55875. Then y1 = 1 + 2 � 1 � 4:55875 = �1:55875.
Other observations are similarly obtained. If x2 = 2 and "2 = 1:00969 then
y2 = 6:00969, and so on. Suppose that this data generating process yields
the following sample of �ve observations

Observation x " � N [0; 4] y = 1 + 2x+ "
i = 1 x1 = 1 "1 = �4:55875 y1 = �1:55875
i = 2 x2 = 2 "2 = 1:00969 y2 = 6:00969
i = 3 x3 = 3 "3 = �1:31399 y3 = 5:68601
i = 4 x4 = 4 "4 = 4:04800 y4 = 13:04800
i = 5 x5 = 5 "5 = �0:62484 y5 = 10:37516

Figure 7 presents the true regression line E[yjx] = 1 + 2x and the �ve
generated observations for y = 1 + 2x + ". Note that the sample points
deviate from the true regression line, due to the error term ".

For the �ve data points given in Figure 7 the formulae for the least
squares slope and intercept estimates lead to b2 = 3:0906 and b1 = �2:5598.
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Figure 7: Population regression line �0 + �1x and �ve sample data points
generated from this line using y = �0 + �1x+ " for x = 1, 2, 3, 4 and 5 and
corresponding " = �4:55875, 1:00969, �1:31399, 4:04800 and �0:62484.

So the �tted regression line b1 + b2x = �2:5598 + 3:0906x di¤ers from the
true regression line �1 + �2x = 1 + 2x. This is shown in Figure 8 where
the solid line is the true regression line and the dashed line is the �tted
regression line.

The �tted regression line clearly di¤ers from the true regression line, due
to sampling variability. This chapter is concerned with inference on the true
regression line, controlling for this sampling variability.

5 Finite Sample Properties of the OLS Estimator

We focus on the slope coe¢ cient.

5.1 A Key Result

We consider the OLS slope coe¢ cient

b2 =

Pn
i=1(xi � �x)(yi � �y)Pn

i=1(xi � �x)2
(16)

as an estimator of population slope coe¢ cient �2.
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Figure 8: Population regression line �0+�1x = 1+2x is the solid line. The
�tted regression line for �ve sample data points is b1 + b2x = �2:5598 +
3:0906x and is given by the dashed line.

The key result is that given assumptions 1-2, the OLS slope coe¢ cient
b2 can be expressed as �2 plus a weighted sum of the errors ui:

b2 = �2 +
nX
i=1

wiui; (17)

where the weights

wi =
(xi � �x)Pn
i=1(xi � �x)2

: (18)

For proof see the appendix. It follows that if we condition on the x0is, so
that the weights wi are constants, then the properties of b2 follow directly
from the assumptions on ui.

5.2 Unbiasedness of OLS Slope Estimate

Assumption 3, that E[ui] = 0, implies that E[wiui] = 0 so

E[b2] = �2; (19)

see the appendix.
Thus b2 has the attractive property that it is unbiased for �2. This

means that if we had many samples of size n on y and x, and computed b2
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for each sample, then the average of the estimates of b2 equals �2. More
simply, on average b2 equals �2. The inference problem is that for any
particular sample b2 will di¤er from �2.

5.3 Variance of OLS Slope Estimate

Assumptions 4 and 5 then yield that

V[b2] =
�2uPn

i=1(xi � �x)2
; (20)

see the appendix.
The OLS estimator has some desirable properties. It will be shown

in the multiple regression section that this variance is the smallest among
all linear unbiased estimators (of the form

P
aiyi) under assumptions 1-

5. Under assumptions 1-6 this variance is the smallest among all unbiased
estimators so OLS is then the best estimator.

5.4 Standard Error of OLS Slope Estimate

The formula for V[b2] depends on the unknown parameter �2u. An unbiased
estimate for �2u is

s2u =
1

n� 2

nX
i=1

(yi � byi)2; (21)

a result that will be proven for multiple regression. The square root, su, is
called the standard error of the regression or the root MSE:

Replacing �2u by s
2
u in (20) and taking the square root yields the stan-

dard error of b2

se[b2] =

s
s2uPn

i=1(xi � �x)2
; (22)

where the term standard error means estimated standard deviation.
The standard error se[b2] measures the precision of b2 as an estimate of

�2, so precision is better:

1. the closer the data are to the true regression line (then s2u is small);

2. the larger is the sample size n (then
P
i(xi � �x)2 is larger);

3. the more widely scattered are the regressors x (then
P
i(xi � �x)2 is

larger).
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The second property leads to an inverse square root rule for precision. If
the sample size n quadruples, the sum

P
i(xi� �x)2 quadruples, its reciprocal

is one-fourth as large and taking the square root se[b2] is halved. More
generally, if the sample is m times larger then the standard error of b2 is
1=
p
m times as large.

6 Finite Sample Inference

We consider linear regression in �nite samples with normal errors. As for
univariate statistics, hypothesis tests and con�dence intervals are based on
a t-statistic.

6.1 The t-statistic

So far we have shown that under assumptions 1-5 b2 has mean �2 and vari-
ance V[b2] given in (20). If additionally the errors ui are normally distributed
then b2 is normal, since b2 = �2+

Pn
i=1wiui is then a linear combination of

normals. Thus under assumptions 1-6

b2 � N
�
�2;

�2uPn
i=1(xi � �x)2

�
: (23)

This implies that

z =
b2 � �2p

�2u=
Pn
i=1(xi � �x)2

� N [0; 1]: (24)

This statistic depends on the unknown �2u. Replacing �
2
u by s

2
u de�ned

in (20) leads to a slight change in the distribution, with

t =
b2 � �2p

s2u=
Pn
i=1(xi � �x)2

=
b2 � �2
se[b2]

� t(n� 2): (25)

Proof is deferred to multiple regression.
Here t(n�2) denotes Students t-distribution with (n�2) degrees of free-

dom. The t(n�2) density is similar to a standard normal density. It is bell-
shaped with mean 0 but has fatter tails with mean n=(n�2) > 1. In Stata the
command ttail(df; t) gives Pr[T > tjT � t(df)]. The command invttail(df; a)
gives the reverse. e.g. ttail(27; 2:0) = 0:028 and invttail(27; 0:05) = 1:703:
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6.2 Con�dence Intervals

Di¤erent samples yield regression lines with di¤erent slopes. We consider
con�dence intervals for the population slope coe¢ cient �2, based on the
sample estimate b2. A 100(1� �) percent con�dence interval for �2 is

b2 � t�=2;n�2 � se[b2]; (26)

where se[b2] is de�ned in (22) and t�=2;n�2 varies with the level of con�dence
and denotes the value t� such that the Pr[Tn�1 > t�] = �=2 where Tn�2
is t distributed with (n � 2) degrees of freedom. In Stata t�=2;n�2 can be
calculated using the command invttail(n� 2; �=2).

To obtain this result, note that

Pr
�
�t�=2 < T < t�=2

�
= 1� � for general T

) Pr
h
�t�=2 < b2��2

se[b2]
< t�=2

i
= 1� � given (25)

) Pr
�
�t�=2 � se[b2] < b2 � �2 < t�=2 � se[b2]

�
= 1� � multiply by se[b2]

) Pr
�
�b2 � t�=2 � se[b2] < ��2 < �b2 + t�=2 � se[b2]

�
= 1� � subtract b2

) Pr
�
b2 + t�=2 � se[b2] > �2 > b2 � t�=2 � se[b2]

�
= 1� � multiply by � 1

) Pr
�
b2 � t�=2 � se[b2] < �2 < b2 + t�=2 � se[b2]

�
= 1� � rearrange

A common example is a 95 percent con�dence interval, in which case
(1 � �) = 0:95, so � = 0:05 and the critical value is t:025;n�2. Furthermore
t:025;n�2 ' 2 for most values of n, so a 95 percent con�dence interval is
approximately

b2 � 2� sb2 ;

or the slope coe¢ cient plus or minus two standard errors.
As an example, consider the house price and size data for Central Davis.

The con�dence interval can be computed from �rst principles as follows. The
output gives b2 = 73:77 and se[b2] = 11:17, while t�=2;n�2 = t:025;27 = 2:052.
So the 95 percent con�dence interval is

b2 � t:025;27 � sb2 = 73:77� 22:93 = (50:84, 96:70):

As expected, this is the interval given by Stata in Section 3.

6.3 Hypothesis Tests

Estimation yields a sample estimate of the population slope coe¢ cient �2
or a con�dence interval of values for �2. Hypothesis tests ask whether a
speci�ed value of �2 is plausible, given the sample estimate b2.
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As an example, consider the claim that the population mean sale price of
a house increases by $50 per additional square foot in size, i.e. that �2 = 50.
This would be of interest if enlarging an existing house costs $50 per square
foot. The regression slope coe¢ cient b2 = 73:77 for a sample of 29 houses.
Is this far enough away from 50 to reject the hypothesis that �2 = 50? Or
could this di¤erence from 50 be merely an artifact of sampling variability?

For hypothesis tests on the slope coe¢ cient the test statistic used is the
t statistic

t2 =
b2 � ��2
se[b2]

: (27)

where ��2 is the hypothesized value of �2 under H0. Large values of t support
rejection of H0, since they arise if b2 di¤ers greatly from the hypothesized
value ��2. If indeed �2 = ��2 then from (27) the statistic t2 is t(n � 2)
distributed, making it possible to obtain p values and critical values for the
t test. We distinguish between two-sided and one-sided tests.

6.4 Two-Sided Tests

Let ��2 be a hypothesized value for �2, such as �
�
2 = 0 or ��2 = 50. A

two-sided test or two-tailed test on the slope coe¢ cient is a test of

H0 : �2 = �
�
2

against Ha : �2 6= ��2;
(28)

whereH0 denotes the null hypothesis andHa denotes the alternative hypoth-
esis. The t statistic t2 de�ned in (27) is used. This statistic is distributed
as tn�2 under the null hypothesis that �2 = �

�
2 and assumptions 1-6 hold.

The statistic t2 6= 0 if the sample slope estimate b2 6= ��2, the hypoth-
esized value of �2. There are two reasons this may occur. It may be that
�2 6= ��2, or it may be that �2 = ��2 but due to sampling variability b2 6= ��2.
Hypothesis testing proceeds as follows:

� Assume that �2 = ��2, i.e. the null hypothesis is true.

� Obtain the probability (or signi�cance level) of observing a t statistic
equal to or greater than the sample value, where this probability is
calculated under the assumption that �2 = �

�
2.

� Reject the null hypothesis only if this probability is quite small.

Given a computed t statistic there are two ways to implement this signif-
icance level approach to testing. We present in order the p value approach
and the critical value approach. They produce exactly the same conclusion.
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6.4.1 Rejection using p values

As an example, suppose t = 1:5 for a sample of size 29: Since the t statistic
is t distributed with n � 2 degrees of freedom, the probability of observing
a value of 1:5 or larger in absolute value is Pr[jT27j > 1:5] = 0:145, using
ttail(27; 1:5) = 0:0726: Thus while t = 1:5 6= 0 suggests that �2 6= ��2 there
is a nontrivial probability that this departure from 0 is by chance, since even
if b2 = ��2 we expect the t statistic to exceed 1:5 with probability 0:145.

More generally H0 : �2 = ��2 is rejected if the t statistic is large in
absolute value. The probability of just rejecting H0 given a calculated value
t is called the p value, with

p = Pr[jTn�2j � jtj ]; (29)

where Tn�2 � tn�2 and t is the sample value of the t statistic. The quantity
Pr[jT j � jtj] equals Pr[T � t] for t > 0 and Pr[T � t] for t < 0. The decision
rule is then

Reject H0 if p < �;

where � is the signi�cance level of the test. We do not reject the null
hypothesis at level � if p � �. In Stata p = 2�ttail(n� 2; jtj).

The standard testing approach is to take the conservative stance of re-
jecting H0 only if the p value is low. The most common choice of signi�cance
level is � = :05.

6.4.2 Rejection using critical values

The p value approach requires access to a computer, in order to precisely
compute the p value. An alternative approach requires only tables of the t
distribution for selected values of �, and was the method used before the
advent of ready access to computers.

This alternative approach de�nes a critical region, which is the range
of values of t that would lead to rejection of H0 at the speci�ed signi�cance
level �. H0 is rejected if the computed value of t falls in this range.

For a two-sided test of H0 : �2 = ��2 and for speci�ed �, the critical
value is c such that Pr[jTn�2j � c] = �, or equivalently

c = t�=2;n�2; (30)

where � is the pre-chosen signi�cance level, often � = 0:05. The decision
rule is then

Reject H0 if jtj > c
and do not reject otherwise. In Stata c = invttail(n� 2; �=2).
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6.4.3 Example of Two-sided Test

Consider a test of whether or not house prices increase by $50 per square
foot, i.e. whether �2 = 50 in a regression model of house price and house
size. The Excel output cannot be immediately used, unlike the simpler test
of �2 = 0. Instead the appropriate t statistic must be calculated. This is

t = (b2 � ��2)=sb2 = (73:77� 50)=11:17 = 2:13:

The p value is p = Pr[jT j >= 2:13] = 0:042, using 2�ttail(27; 2:13) =
0:042. H0 is rejected at signi�cance level 0:05, as 0:042 < 0:05.

Alternatively, and equivalently, the critical value c = t:025;27 = 2:052,
using invttail(27; 0:025) = 2:052. Again H0 is just rejected, since t = 2:13 �
2:052.

The conclusion, at signi�cance level � = :05, is that the e¤ect of an extra
square foot is to increase the sale price by an amount other than $50.

6.4.4 Relationship to Con�dence Interval

Two-sided tests can be implemented using con�dence intervals. If the null
hypothesis value ��2 falls inside the 100(1 � �) percent con�dence interval
then do not reject H0 at signi�cance level �. Otherwise reject H0 at signif-
icance level �.

For the house price data, the 95 percent con�dence interval for �2 is
(50:84; 96:70). Since this interval does not include 50 we reject H0 : �2 = 50
at signi�cance level 0:05.

6.5 One-Sided Tests

Again let ��2 be a speci�ed value for �2, such as �
�
2 = 0 or ��2 = 50. One-

sided or one-tailed tests can be either an upper one-tailed alternative
test

H0 : �2 � ��2
against Ha : �2 > �

�
2;

or a lower one-tailed alternative test

H0 : �2 � ��2
against Ha : �2 < �

�
2:

For one-sided tests it is not always clear which hypothesis should be set
up as the null and which as the alternative. The convention for one-sided
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tests is to specify the alternative hypothesis to contain the state-
ment being tested. For example, if it is asserted that house prices increase
by at least $50 for each extra square foot of house, one tests H0 : �2 � 50
against Ha : �2 > 50. This counterintuitive approach of determining H0
and Ha was justi�ed in detail in the univariate case and is not repeated
here. Essentially setting up the problem this way makes it more di¢ cult to
con�rm the claim.

Inference is based on the same calculated t statistic t = (b2 � ��2)=sb2 as
used for two-sided tests.

6.5.1 Upper one-tailed test

For an upper one-tailed test, large positive values of t are grounds for re-
jection of H0, as then b2 is much larger than ��2, suggesting that �2 > �

�
2.

Thus

p = Pr[Tn�2 >= t]

c = t�;n�2:

H0 is rejected at signi�cance level � if p < � or if t > c.
In Stata, the p value can be computed using p = ttail(n � 2; t). The

critical value is c = invttail(n� 2; �).

6.5.2 Lower one-tailed test

For a lower one-tailed test, large negative values of t lead to rejection of H0,
as then b2 is much less than ��2, suggesting that �2 < �

�
2. Thus

p = Pr[Tn�2 <= t]

c = �t�;n�2:

H0 is rejected at signi�cance level � if p < � or if t < c.
For lower one-tailed tests t is usually negative. In Stata we use p =

1�ttail(n� 2; t). The critical value is c = �invttail(n� 2; �).

6.5.3 Example of One-Sided Test

Suppose the claim is made that house prices increase by at least $50 per
additional square foot. Then the claim is made the alternative hypothesis
and the appropriate test is an upper one-sided test of H0 : �2 � 50 against
Ha : �2 > 50.
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The t statistic is the same as in the two-sided case, so t = 2:13. Now
p = Pr[T >= 2:13] = 0:021, using Stata function ttail(27,2.13). So H0 is
strongly rejected at signi�cance level 0:05. Equivalently, the critical value
c = t:05;27 = 1:703, using invttail(27; 0:05). H0 is again rejected since t =
2:13 � 1:703.

We therefore reject H0 and conclude that, at signi�cance level � = :05,
the e¤ect of an extra square foot is to increase the sale price by at least $50.

Note that compared to the similar two-sided test at level � = 0:05 the
rejection is stronger in the one-sided test. This is because it is easier to
determine that �2 lies in the narrower alternative hypothesis region �2 > 50
than in the broader region �2 6= 50.

6.6 Tests of Statistical Signi�cance

The most common hypothesis test is a test of whether or not a slope para-
meter equals zero.

This is called a test of the statistical signi�cance of a regressor.
It answers the question of whether or not x has an e¤ect on y in the popula-
tion. If it has no population e¤ect, then clearly �2 = 0 and the population
regression model y = �1 + �2x+ " reduces to y = �1 + ", so that y bounces
around a mean value of �1.

Formally the test is a two-sided test of H0 : �2 = 0 against Ha : �2 6=
0:Regression packages automatically print out statistics to enable tests of
this hypothesis. In particular, many packages give the p value for this test.
H0 is rejected at level �, and statistical signi�cance is con�rmed, if p < �.
If instead p > � then H0 is not rejected and it is concluded that there is
no statistically signi�cant relationship or equivalently, that the regressor is
statistically insigni�cant. The most common choice of � is 0.05, followed by
0.01 and 0.10. e.g. for the house price example in section 2, p = 0:000 < 0:05
so house size is a highly statistically signi�cant regressor at signi�cance level
0:05.

In some cases there may be a prior belief that the slope coe¢ cient is
positive or that it is negative. Then a one-sided test is used, which usually
requires halving the printed p value. Unfortunately there can be ambiguity
in the statement that �the regressor is statistically signi�cant at signi�cance
level 0:05�as it will not always be clear whether a one-sided or two-sided test
was performed. Clearer is to say that a regressor is positively statistically
signi�cant if the prior belief that �2 is positive is supported by an appropriate
hypothesis test, and negatively statistically signi�cant if the prior belief that
�2 is negative is supported.
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6.7 One-sided versus two-sided tests

One-sided tests and two-sided tests use the same computed value t of the t
statistic, but di¤erent p values or critical values.

For a one-sided test we use p = Pr[T >= t] or p = Pr[T <= t], which is
one-half of the two-sided p value of p = Pr[jT j >= t].

In particular, for one-sided tests of statistical signi�cance one halves the
p value reported for a two-sided test. In addition one needs to verify that
b2 > 0 for tests against Ha : �2 > 0 and that b2 < 0 for tests against
Ha : �2 < 0.

6.8 Presentation of Regression Results

Published articles can di¤er in the method of presentation of regression re-
sults. They always report the intercept and slope coe¢ cients b1 and b2.
They usually report model �t using R2. But there can be great variation in
which combinations of the standard error, t statistic (for test that the pop-
ulation coe¢ cient equals zero), and p value are reported. Given knowledge
of one of these three, and knowledge of the slope coe¢ cient, it is always
possible to compute the other two. For example, given b2 and sb2 , we can
compute t = b2=sb2 and p = Pr[jTn�2j � t]. Similarly, given b2 and t we can
compute sb2 = b2 � t:

It is easiest if all four of b, sb, t and p are reported. But for space
reasons, especially if there are several di¤erent models estimated or if the
models have additional regressors, it is quite common for published studies
to report only b and one of sb, t and p:

Thus for the house price regression we might report the coe¢ cients and
standard errors

HPRICE = 115017
(21489)

+ 73:77
(11:17)

�HSIZE R2 = 0:79:

Or we may report the coe¢ cients and t statistics for population coe¢ cient
equal to zero

HPRICE = 115017
(5:35)

+ 73:77
(6:60)

�HSIZE R2 = 0:79:

Or just the coe¢ cients and p values may be reported

HPRICE = 115017
(0:000)

+ 73:77
(0:000)

�HSIZE R2 = 0:79:

Using any of these three alternatives we can verify that the slope coef-
�cient is statistically signi�cant at level 0:05. And while we have focused
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on the slope coe¢ cient it is clear from this output that the intercept is also
statistically signi�cant at level 0:05.

The p value approach is the simplest testing approach, though some care
is needed for one-sided tests. Many studies instead report t statistics. These
can be interpreted as follows. Testing is most often done at signi�cance level
� = 0:05, and t:025 � 1:960 for all degrees of freedom. So a rough guide is
that the null hypothesis is rejected at signi�cance level 0:05 for a two-sided
test if the t statistic exceeds approximately 2:0 in absolute value. Similarly,
for one-sided tests at 5 percent a rough guide is to reject for an upper
alternative test if t > 1:645, and to reject for an upper alternative test if
t < 1:645, since t:05 � 1:645.

7 Large Sample Inference

As sample size n!1 the least squares estimator b2 collapses on �2, since
its variance goes to zero. Formally this property is called convergence in
probability and the OLS estimator is said to be consistent.

Also it can be shown that as n!1 the �t statistic�

t2 =
b2 � ��2
se[b2]

; (31)

is actually standard normal distributed (rather than t-distributed). This
requires only assumptions 1-5, i.e. the regression model errors need not be
normally distributed. Then inference is based on the N [0; 1] distribution
rather than the t(n� 2) distribution.

So wherever we use t�;n�2 or t�=2;n�2 in the preceding we can use z� or
z�=2, where z denotes a standard normal variable. This will be detailed for
multiple regression.

8 Multivariate Regression

Multivariate regression is a conceptually straightforward. The regression
line from regression of y on an intercept and x2, x3, .... , xk is denoted

by = b1 + b2x2 + � � �+ bkxk: (32)

The least squares estimator now minimizes wrt b1, ..., bk the sum of squared
residuals

nX
i=1

(yi � byi)2 = nX
i=1

(yi � b1 � b2xi � � � � � bkxk)2: (33)
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The main jump is that it is not possible to express the resulting estimates
using summation notation. Instead we use matrix algebra.

9 Summary

Some key equations / results for bivariate regression are

OLS method b1; b2 minimize
Pn
i=1(yi � (b1 + b2xi)2

OLS slope estimate b2 =
Pn
i=1(xi � �x)(yi � �y) /

Pn
i=1(xi � �x)2

Population model y = �1 + �2x2 + u
Population assumptions 1� 6
Unbiasedness of b2 E[b2] = 0
Standard error of b2 se[b2] = su=

pPn
i=1(xi � �x)2

Standard error of regression s2u =
1
n�2

Pn
i=1(yi � byi)2

Con�dence interval for �2 �2 2 b2 � tn�2;�=2 � se[b2]
t statistic for H0 : �2 = �

�
2 t = b2��2

se[b2]
� tn�2:

10 Appendix: Mean and Variance for OLS Slope
Coe¢ cient

First show b2 = �2 +
Pn
i=1wiui, where wi = (xi � �x)=

Pn
i=1(xi � �x)2:

b2 =
Pn
i=1(xi � �x)(yi � �y)=

Pn
i=1(xi � �x)2

=
Pn
i=1(xi � �x)yi=

Pn
i=1(xi � �x)2 as

Pn
i=1(xi � �x)�y = 0

=
Pn
i=1[(xi � �x)=

Pn
i=1(xi � �x)2]yi rearranging

=
Pn
i=1wiyi for wi de�ned above

=
Pn
i=1wif�1 + �2xi + uig by assumption 1

= �1
Pn
i=1wi + �2

Pn
i=1wixi +

Pn
i=1wiui

= �2 +
Pn
i=1wiui using

Pn
i=1wi = 0 and

Pn
i=1wixi = 1:

The last line uses

nX
i=1

wi =

nX
i=1

(xi � �x)Pn
i=1(xi � �x)2

=

Pn
i=1(xi � �x)Pn
i=1(xi � �x)2

= 0 as
nX
i=1

(xi � �x) = 0;

and

nX
i=1

wixi =

nX
i=1

(xi � �x)Pn
i=1(xi � �x)2

xi =

Pn
i=1(xi � �x)xiPn
i=1(xi � �x)2

=

Pn
i=1(xi � �x)xiPn
i=1(xi � �x)xi

= 1:

28



Next obtain the mean and variance

E[b2] = E[�2 +
Pn
i=1wiui]

= E[�2] + E[
Pn
i=1wiui]

= �2 +
Pn
i=1 E[wiui] given independence over i

= �2 +
Pn
i=1wiE[ui] since wi depends on nonstochastic x

= �2; since E[ui] = 0 by ass. 3

and

V[b2] = E[(b2 � �2)2]
= E[(

Pn
i=1wiui)

2] since b2 = �2 +
Pn
i=1wiui

= E[(
Pn
i=1wiui)(

Pn
j=1wjuj)] squaring the sum

= E[
Pn
i=1

Pn
j=1wiwjuiuj ]

=
Pn
i=1

Pn
j=1wiwjE[uiuj ]

=
Pn
i=1w

2
iE[u

2
i ] if E[uiuj ] = 0; i 6= j (ass. 4)

=
Pn
i=1w

2
i �
2
u if E[u2i ] = �

2
u (ass. 5)

= �2u
Pn
i=1w

2
i

= �2u=
Pn
i=1(xi � �x)2 since

Pn
i=1w

2
i = 1=

Pn
i=1(xi � �x)2:

The least line usesPn
i=1w

2
i =

Pn
i=1

h
(xi��x)Pn
i=1(xi��x)2

i2
=

Pn
i=1(xi��x)2

[
Pn
i=1(xi��x)2]

2

= 1Pn
i=1(xi��x)2

: simplifying.
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