Inference for Regression with Clustered and Spatially Correlated Data

A. Colin Cameron and Douglas L. Miller . Univ. of California - Davis, Dept. of Economics Cornell University, Brooks School of Public Policy and Dept. of Economics

INCOMPLETE SLIDES

These slides are based on a survey article that is in preparation. When complete, the survey will be posted at cameron.econ.ucdavis.edu/ in the Papers section.

April 7, 2025

Introduction

- Consider inference for regression with data that are correlated across some measure of distance
 - most often geographic distance.
- Positive correlation in distance leads to an information loss relative to independent data.
- Failure to adequately account for this loss in precision can lead to
 - greatly under-estimated standard errors for model parameters
 - confidence intervals that are too narrow
 - hypothesis tests that greatly over-reject.

- First consider inference with clustering
 - appropriate when spatial correlation disappears when a threshold is crossed.
 - the discussion is actually relevant for any clustered setting
 - key surveys are Cameron and Miller (2005, JHR) and MacKinnon, Nielson and Webb (2023a, JE).
- Second consider spatial HAC inference
 - appropriate when spatial correlation is dampening in distance
 - key reference is Conley (1999, JE).

- Topics covered include
 - standard asymptotic results
 - \star essential to at least use these
 - adjustment to finite samples
 - * asymptotics can provide poor finite-sample approximation
 - briefly: design based inference for binary treatment.
- We focus on OLS
- Most asymptotic results extend to IV, probit, logit and GMM.
 - though many finite sample improvements are specific to OLS.

- Nunn and Wantchekon (AER 2011)
 - effect of historical slave trade on current levels of trust
 - sample of individuals in 17 African countries.
- y: trust: individual level of trust in their locally-elected council
 - scored on a four point-scale

★ 0 ("not at all"), 1 ("just a little"), 2 ("somewhat"), 3 ("a lot").

- Key x: exports is a measure of slave exports
 - natural logarithm of one plus (total slave exports / area in kilometers²)
 - collected at the ethnicity level.
- What to cluster on?
 - ethnicity as x invariant within ethnicity
 - distance
 - ★ cluster by town, district, region, country?
 - \star spatial HAC by ethnicity distance.

Outline

- Introduction
- One-way Clustering
- Beyond One-way Clustering
- Spatially Dampening Correlation
- Regression with Spatial Weights
- Onclusion

2.1 How to Form Clusters

- It is not always clear how to form clusters.
- For OLS: the within cluster correlation of $\mathbf{x}_i u_i$ matters.
- For $\hat{\beta}_k$ the cluster-robust variance is a multiple τ_k^2 of the default OLS variance under i.i.d. errors where

$$au_k^2 \simeq 1 + (ar{N}_g - 1) imes
ho_{ imes_k u}$$
 (very approximately).

- Here $\rho_{x_k u}$ is the intracluster correlation of $x_k u$ and \bar{N}_g is the average number of observations per cluster
 - ▶ so large if N_g large even if $\rho_{x_k u}$ is very small.

How to Form Clusters (Continued)

- In many studies interest lies in a specific regressor, say x_k
 - form clusters on groupings with high within-group correlation of x_k
 - in many policy applications treatment is grouped.
- Possibly cluster on groupings of y with high within-group correlation
 - since this might lead to nontrivial within group correlation of u

 \star even after controlling for the other regressors.

• For complex surveys one should at least cluster at the level of the primary sampling unit.

How to Form Clusters (continued)

- If potential clustering is nested such as individuals in families in towns in states
 - common practice: cluster at increasingly aggregated levels
 - * stop when there is relatively little increase in standard errors.
 - MacKinnon, Nielson and Webb (2023c, JE) provide formal tests
 - possible downside is noisier inference due to few clusters.
- In some cases there are two (or more) nonnested ways to cluster
 - e.g. in an individual wage regression potentially cluster on occupation and on industry.
 - extensions to one-way clustering are presented in section 3.

2.2 One-way Cluster Variance Estimators

- Traditional model-based approach randomness from the error
 - recent design-based approach presented later.
- OLS estimates model for individual *i* in cluster *g*

$$\begin{array}{rcl} y_{ig} & = & \mathbf{x}'_{ig}\beta + u_{ig}, \ i = 1, ..., N_g, \ g = 1, ..., G, \ N = \sum_{g=1}^G N_g \\ \mathbf{y}_g & = & \mathbf{X}'_g \beta + \mathbf{u}_g, \quad g = 1, ..., G \\ \mathbf{y} & = & \mathbf{X}\beta + \mathbf{u}_g \end{array}$$

• Clustered errors: u_{ig} independent over g and arbitrarily correlated within g

$$\mathsf{E}[u_{ig}u_{jg'}|\mathbf{x}_{ig},\mathbf{x}_{jg'}]=0$$
, unless $g=g'$.

• Then OLS estimator $\widehat{oldsymbol{eta}}=({f X}'{f X})^{-1}{f X}'{f y}$ has (conditional on ${f X})$

$$\begin{aligned} \mathsf{Var}[\widehat{\boldsymbol{\beta}}] &= (\mathbf{X}'\mathbf{X})^{-1}\mathsf{E}[\mathbf{X}'\mathbf{u}\mathbf{u}'\mathbf{X}](\mathbf{X}'\mathbf{X})^{-1} \\ &= (\mathbf{X}'\mathbf{X})^{-1}(\sum_{g=1}^{\mathcal{G}}\mathsf{E}[\mathbf{X}'_{g}\mathbf{u}_{g}\mathbf{u}'_{g}\mathbf{X}_{g}])(\mathbf{X}'\mathbf{X})^{-1}. \end{aligned}$$

Aside: Intuition for why cluster leads to larger variance

• Consider regression model $y_i = \mu + u_i$ where $u_i \sim (\mu, \sigma^2)$ and $Cov(u_i, u_j) = \rho \sigma^2$ for $i \neq j$

ullet OLS yields the sample mean $\widehat{\mu}=ar{y}$ and

$$\mathsf{Var}[\widehat{\mu}] = \mathsf{Var}[\overline{y}] = \mathsf{Var}\left[\frac{1}{N}\sum_{i=1}^{N} y_i\right] = \frac{1}{N^2}\left[\sum_{i=1}^{N}\sum_{j=1}^{N}\mathsf{Cov}(y_i, y_j)\right]$$

• Here
$$Cov(y_i) = \sigma^2$$
 and $Cov(y_i, y_j) = \rho\sigma^2$ for $i \neq j$
So $Var[\mathbf{y}] = \sigma^2 \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & & \vdots \\ \vdots & & \ddots & \rho \\ \rho & \cdots & \rho & 1 \end{bmatrix}$

and
$$\operatorname{Var}[\bar{y}] = \frac{1}{N^2} \left[\sum_{i=1}^{N} \operatorname{Var}(y_i) + \sum_{i=1}^{N} \sum_{j=1; j \neq i}^{N} \operatorname{Cov}(y_i, y_j) \right]$$

= $\frac{1}{N^2} [N\sigma^2 + N(N-1)\rho\sigma^2] = \frac{1}{N}\sigma^2 \{1 + (N-1)\rho\}.$

Aside: continued

- So $\operatorname{Var}[\bar{y}] = \{1 + (N-1)\rho\}$ times usual $\frac{1}{N}\sigma^2$.
- ullet The multiplier grows linearly in N and ho
- ullet The multiplier can be very large even when ho is small

• e.g.
$$\rho = 0.1$$
 and $N = 81$ then $Var[\bar{y}] = 9 \times (\frac{1}{N}\sigma^2)$.

- More generally with regressors and clustering
 - let \bar{N}_g be average number of observations per cluster
 - \blacktriangleright let ρ_{xu} be the within cluster correlation of the product xu
 - then very approximately cluster variance is τ_i^2 times that of default OLS

$$\tau_j^2 \simeq 1 + \rho_{xu} (\bar{N}_g - 1)$$

One-way Cluster-Robust Variance Matrix Estimators

• For OLS with independent clustered errors

$$\mathsf{Var}[\widehat{oldsymbol{eta}}] = (\mathbf{X}'\mathbf{X})^{-1} (\sum_{g=1}^{\mathcal{G}} \mathsf{E}[\mathbf{X}_g' \mathbf{u}_g \mathbf{u}_g' \mathbf{X}_g]) (\mathbf{X}'\mathbf{X})^{-1}$$

• A (heteroskedastic- and) cluster-robust variance estimate (CRVE) is

$$\begin{array}{lll} \widehat{\mathsf{V}}_{\mathsf{CR}}[\widehat{\boldsymbol{\beta}}] &=& c_N(\mathbf{X}'\mathbf{X})^{-1}(\sum_{g=1}^{\mathsf{G}}\mathbf{X}'_g\widetilde{\mathbf{u}}_g\widetilde{\mathbf{u}}'_g\mathbf{X}_g)(\mathbf{X}'\mathbf{X})^{-1}\\ \widetilde{\mathbf{u}}_g \text{ is } \widehat{\mathbf{u}}_g &=& \mathbf{y}_g - \mathbf{X}'_g\widehat{\boldsymbol{\beta}} \text{ or a modification of } \widehat{\mathbf{u}}_g\\ &c_N &\geq& 1 \text{ is a finite sample correction} \end{array}$$

- Key for consistency is $G \to \infty$ and no single cluster too dominant.
- Due to Liang and Zeger (1986, JASA) and Arellano (1987, JE)
 - Natural generalization of White (1980) heteroskedastic-robust
 - \star special case where $N_g = 1$ for all g.

Finite Sample Adjustments

- OLS residuals overfit: $\hat{\mathbf{u}} = \mathbf{M}\mathbf{u}$ where $\mathbf{M} = \mathbf{I} \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$
- This leads to adjustments that generalize ones proposed for independent heteroskedastic errors by MacKinnon and White (1985)
 - Bell and McCaffrey (2002) is a key reference
 - ★ CV2 is called bias-reduced linearization (BLR)
 - ★ CV3 is equivalent to a jackknife (if all \mathbf{M}_g invertible).

	c _N	ũg	Formulas
CV0	1	$\widehat{\mathbf{u}}_{g}$	$\widehat{u}_g=y_g-X_g'\widehat{oldsymbol{eta}}$
CV1a	$\frac{G}{G-1}$	$\widehat{\mathbf{u}}_{g}$	"
CV1b	$\frac{G}{G-1} \times \frac{N-1}{N-K}$	$\widehat{\mathbf{u}}_{g}$	Ш
CV2	1	$M_g^{-1/2}\widehat{u}_g$	$\mathbf{M}_g = \mathbf{I} - \mathbf{X}_g (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'_g$
CV3/CV _{Jack}	$\frac{G}{G-1}$	$\check{M}_{g}^{-1}\widehat{u}_{g}$	"

• Key: Recent research strongly supports use CV2 or CV3.

CV3 and Jackknife

• Let $\widehat{oldsymbol{eta}}_{-g}$ be OLS when delete cluster g, g=1,...,G

$$\widehat{\boldsymbol{\beta}}_{-g} = \left[\sum_{h \neq g}^{G} \mathbf{X}'_{h} \mathbf{X}_{h} \right]^{-1} \sum_{h \neq g}^{G} \mathbf{X}'_{h} \mathbf{y}_{h}$$

$$= \left[\mathbf{X}' \mathbf{X} - \mathbf{X}'_{h} \mathbf{X}_{h} \right]^{-1} \left[\mathbf{X}' \mathbf{y} - \mathbf{X}'_{h} \mathbf{y}_{h} \right].$$

• The leave-one-out cluster jackknife uses

$$\mathsf{CV}_{\mathit{Jack}} = \frac{\mathcal{G}}{\mathcal{G}-1} \sum\nolimits_{g=1}^{\mathcal{G}} (\widehat{\boldsymbol{\beta}}_{-g} - \widehat{\boldsymbol{\beta}}) (\widehat{\boldsymbol{\beta}}_{-g} - \widehat{\boldsymbol{\beta}})'.$$

Otherwise

- drop clusters where can't compute $\widehat{\beta}_{-r}$
- better: use a Moore-Penrose generalized inverse

2.3 Application

- Nunn and Wantchekon (AER 2011)
 - effect of historical slave trade on current levels of trust
 - sample of individuals in 17 African countries.
- y: trust: individual level of trust in their locally-elected council
 - scored on a four point-scale
 - ★ 0 ("not at all"), 1 ("just a little"), 2 ("somewhat"), 3 ("a lot").
- Key x: exports is a measure of slave exports
 - natural logarithm of one plus (total slave exports / area in kilometers²)
 - collected at the ethnicity level.
- Controls: age, age-squared, gender, urban indicator, five living conditions, ten educational-level indicators, 25 occupation indicators, ethnic fractionalization within district, percentage of district with the same ethnicity as the current individual, and 17 country fixed effects.

OLS Regression

• Summary statistics for y and key x

Variable	Obs	Mean	Std. dev.	Min	Max
trust3	19,733	1.65996	1.100935	0	3
exports	19,733	.5357018	.9511826	0	3.65603

- Focus on OLS regression reported in their Table 2 Column 3
 - N = 17,773 individuals in 1,257 districts, 171 regions and 17 countries.
- Estimated coefficient of trust is -0.1106
 - ► a 10% change in intensity of slave exports is associated with a decline of -0.01106 in the trust score.
- Estimated standard error is 0.021
 - authors two-way cluster on *ethnicity* and *district*
 - * ethnicity as trust does not vary for individuals of same ethnicity
 - *district* due to possible geographical correlation in the error here errors can be correlated if live in the same district.
 - authors also consider spatial HAC on *ethnicity* location.

Different Clustering Schemes and CV1b Standard Errors

- CV1b is Stata vce(cluster) with $c_N = \frac{G}{G-1} \times \frac{N-1}{N-K}$ and $\widetilde{\mathbf{u}}_g = \widehat{\mathbf{u}}_g$.
- Different clustering schemes reveal for $\widehat{\beta}=\widehat{\beta}_{exports}$
 - larger standard errors when cluster (None is heteroskedastic-robust)
 - largest when cluster on country (0.292)
 - \star note: then country FEs did not sop all the error correlation.

Cluster	None	Ethnicity	Town	District	Region	Countr
$\widehat{oldsymbol{eta}}$	-0.1106	-0.1106	-0.1106	-0.1106	-0.1106	-0.110
se $(\widehat{oldsymbol{eta}})$	0.0125	0.0216	0.0150	0.0156	0.0239	0.0292
G	19, 733	185	2,766	1,257	171	17
$\overline{N_g}$	1	106.7	7.1	15.7	115.4	1160.8
$\widehat{ ho}_x$	—	1.00	0.881	0.880	0.787	0.615

٥

17 / 74

Difference in the CV1, CV2 and CV3 Estimates

• Here cluster on country and find

• CV3 > CV2 > CV1b > CV0 > None

Cluster :	None	CV0	CV1b	CV2	CV3
$\widehat{oldsymbol{eta}}$	-0.1106	-0.1106	-0.1106	-0.1106	-0.1106
$se(\widehat{eta})$	0.0125	0.0283	0.0292	0.0330	0.0382

- CV2 can be computed in Stata using vce(cluster, hc2) after xtset country
- CV3 in Stata has problems in this example.
 - Use Stata add-on summclust (MacKinnon, Nielsen and Webb (2023b)).
- Use CV2 or CV3: details below.

2.4 Subsequent Inference

• For a single coefficient β , asymptotic theory gives

$$t = rac{\widehat{eta} - eta_0}{\sqrt{\mathsf{se}_{\mathsf{CV}}[\widehat{eta}]}} \sim \mathsf{N}[\mathsf{0},\mathsf{1}].$$

• Standard ad hoc adjustment uses the T(G-1) distribution

- better as T(G-1) distribution has fatter tails than N[0,1]
- ad hoc (Bester, Conley and Hansen (2009, *JE*) derive for a special case)
- But in practice with finite samples and the usual CV1a or CV1b
 - tests based on T(G-1) over-reject
 - confidence intervals based on T(G-1) undercover.

- 4 同 6 4 日 6 4 日 6

Finite Sample Problems

- Problem 1: G is too small.
- Problem 2: X'_gX_g varies between clusters (unbalanced clusters)
 - likely if N_g varies greatly between clusters
 - likely for regressors that take nonzero values in few clusters (or in many clusters)
 - ★ e.g. few clusters are treated.
- Solution 1: Use CV2 or CV3
- Solution 2: Use $t(G^*)$ for data determined $G^* < (G-1)$.
- Solution 3: Combine Solutions 1 and 2.
- MacKinnon, Nielsen and (2023b) Stata add-on summclust considers various issues related to cluster balance.

T with Data-Determined Degrees of Freedom

- Use the usual t statistic but use $t(G^*)$ distribution
- Bell and McCaffrey (2002) have cluster generalization of Satterthwaite (1946)
 - requires a pilot matrix
 - ▶ they use i.i.d. errors and CV2 or CV3.
- Imbens and Kolesar (2016, *REStat*).
 - use equicorrelated errors (random effects model) within cluster and CV2.
- Pustejovsky and Tipton (2017, JBES)
 - extend Imbens and Kolesar to joint hypothesis tests
- Hansen (2024) prefers to use Imbens and Kolesar and CV3 and a modified *t* statistic
 - this can be very conservative
 - e.g. simulations have 95% confidence intervals with 99% coverage.

Bottom Line for Inference

- At least use CV2 or CV3 with t(G-1).
- Most extreme is to use CV3 with $t(G^*)$
 - or Hansen (2024) modification
 - can be very conservative.
- Not clear which is more conservative
 - CV3 with t(G-1).
 - CV2 with $t(G^*)$.
- Jackknife (CV3) has advantage of being applicable to nonlinear estimators and two-way clustering.

2.5 Cluster Balance, Leverage and Influential Observations

- Unbalanced data not only makes inference more challenging.
- It can lead e.g. to $\widehat{oldsymbol{eta}}$ being determined by just a few clusters!
- MacKinnon, Nielsen and Matthew D. Webb (2023a, Sections 7 and 8) present and illustrate
 - cluster leverage measures based on $X_g(X'X)^{-1}X'_g$
 - cluster influence measures based on $\widehat{oldsymbol{eta}}_{-arphi}$ that omits cluster G
- MacKinnon, Nielsen and Matthew D. Webb (2023b, SJ)
 - Stata summclust command for cluster leverage and influence
 - ▶ includes the measure G* of the effective number of clusters due to Carter, Schnepel and Steigerwald (2017, *REStat*).
- Young (2019, *QJE*) shows that leverage can lead to great over-rejection using CV1.

2.6 Placebo Test

- Suppose interest lies in a particular x_k.
- Then 10,000 times
 - \blacktriangleright randomly generate a dataset of z'_ks that have the same properties as the x'_ks
 - run OLS regression with z_k as a regressor
 - perform a 5% test of the statistical significance of z_k
 - this test should reject 5% of the time (500 times out of 10,000)
- Bertrand, Duflo and Mullainathan (2004, QJE)
- See MacKinnon, Nielsen and Matthew D. Webb (2023b, SJ)
 - sections 3.5 and 8.2.

2.7 Wild Cluster Bootstrap with Asymptotic Refinement

- There are several ways to bootstrap
 - different resampling methods
 - different ways to then use for inference
 - \star in some cases can get an asymptotic refinement.
- A fairly general procedure to get an asymptotic refinement is
 - percentile-t (or "studentized") bootstrap that bootstraps the t statistic
 - with cluster-pairs resampling that resamples with replacement $(\mathbf{y}_g, \mathbf{X}_g)$.
- Cameron, Gelbach and Miller (2008) in simulations find better performance with finite G if instead
 - ▶ resample residuals $\hat{\mathbf{u}}_g$ holding \mathbf{X}_g fixed ("wild" cluster bootstrap)
 - impose H_0 in getting the residuals.

Wild Restricted Cluster Bootstrap

- Obtain the restricted LS estimator $\hat{\beta}$ that imposes H_0 . Compute the residuals $\hat{\mathbf{u}}_g$, g = 1, ..., G.
- **2** Do *B* iterations of this step. On the b^{th} iteration:
 - For each cluster g = 1, ..., G: Form û^{*}_g = d_g × û_g where d_g = −1 or 1 each with probability 0.5 Hence form ŷ^{*}_g = X'_gβ + û^{*}_g. This yields wild cluster bootstrap resample {(ŷ^{*}₁, X₁), ..., (ŷ^{*}_G, X_G)}.
 Calculate the OLS estimate β^{*}_{1,b} and its standard error s^{*}_{β¹_{1,b}}. Hence form the Wald test statistic w^{*}_b = (β^{*}_{1,b} - β^{*}₁)/s^{*}<sub>β¹_{1,b}}.
 </sub>
- Solution Reject H_0 at level α if and only if

$$w < w^*_{[\alpha/2]}$$
 or $w > w^*_{[1-\alpha/2]}$,

where $w_{[q]}^*$ denotes the q^{th} quantile of $w_1^*, ..., w_B^*$.

Wild Restricted Cluster Bootstrap (continued)

- Implementation is fast and easy for practitioners.
- Roodman, MacKinnon, Nielsen and Webb (2019, SJ)
 - boottest add-on command to Stata is very fast
 - implements wild and score bootstrap of Wald or score test for many estimators
 - provides confidence intervals by test inversion
 - update includes using CV3
 - has many possible variations.
- MacKinnon (2022, E&S)
 - further computational savings using sums of products and cross-products of observations within each cluster.
- May handle small G and often unbalanced clusters
 - but problems if there are few treated or untreated clusters.

Application

- Apply to OLS regression with clustering on country
- reg trust3 exports \$base_regressors, vce(cluster country)

trust3	Coefficient	Robust std. err.	t	P> t	[95% conf.	interv
exports	110552	.0292151	-3.78	0.002	1724853	0486

- boottest exports
 - Wild bootstrap-t, null imposed, 999 replications, Wald test, bootstrap clustering by country, Rademacher weights

exports

t(16) = -3.7841Prob>|t| = 0.0731

95% confidence set for null hypothesis expression: [-.1801, .05535]

Wild Restricted Cluster Bootstrap (continued)

- Webb (2014, QED WP 1315) proposed a 6-point distribution for d_g in $\widehat{\mathbf{u}}_g^* = d_g \widehat{\mathbf{u}}_g$
 - better when G < 10.
- MacKinnon and Webb (2017, JAE)
 - unbalanced cluster sizes worsens poor test size using $V_{CR}[\hat{\beta}]$.
 - wild cluster bootstrap does well.
- Djogbenou, MacKinnon, Nielsen (2019, JE)
 - prove that the Wild cluster bootstrap provides an asymptotic refinement (using Edgeworth expansions).
- Canay, Santos and Shaikh (2021, REStat)
 - \blacktriangleright provides randomization inference theory for the wild bootstrap when $N_{\rm g} \rightarrow \infty$ and symmetry holds
 - considers both studentized and unstudentized test statistics.

2.8 Cluster-Specific Fixed Effects Models: Summary

• Now
$$y_{ig} = \mathbf{x}'_{ig}\boldsymbol{\beta} + \alpha_g + u_{ig} = \mathbf{x}'_{ig}\boldsymbol{\beta} + \sum_{h=1}^{G} \alpha_g dh_{ig} + u_{ig}$$
.

- 1. FE's do not in practice absorb all within-cluster correlation
 - still need to use cluster-robust VCE.
- 2. Cluster-robust VCE is still okay with FE's (if $G \to \infty$)
 - \blacktriangleright Arellano (1987, JE) for N_g small; Hansen (2007a, JE p.600) for $N_g \rightarrow \infty$
- 3. If N_g is small use xtreg, fe not reg i.id_clu or areg

as reg or areg uses wrong degrees of freedom.

- 4. FGLS with fixed effects needs to bias-adjust for $\hat{\alpha}_g$ inconsistent.
- 5. Need to do a modified Hausman test for fixed effects.
- 6. Modify with idcluster option if bootstrapping.
- 7. Can mean-difference out FEs to save computation time.
- 8. Several ways of dealing with many two-way fixed effects
 - reg2hdfe, felsdvreg, McCaffrey et al. (SJ, 2012) review.

2.9 Panel Data

- For state-year panel data it is standard to one-way cluster on state
 - \blacktriangleright this is valid if $\# {\sf states} {\to} \infty$ regardless of whether there are few or many time periods
- We may consider two-way cluster on both state and time
 - in many microeconomics applications it is enough to use time dummies and cluster on state
 - * but for panel data on firms there may be more reason to two-way
 - note: do not one-way cluster on state-year pair
- For individual panel data y_{it} it is standard to one-way cluster on *i* or some higher level such as state if policy variable is at state level.
- If $T \rightarrow \infty$ can use Driscoll-Kraay (1998) that generalizes time series HAC
 - and allows clusters to be correlated.

Time series robust HAC Standard Errors

- Panel data with $T \rightarrow \infty$ and errors are correlated only up to *m* periods apart.
- Driscoll and Kraay (1998) generalize Newey-West HAC standard errors for pure time series to allow for errors to be spatially correlated across individual units.
- OLS in the model $y_{it} = \mathbf{x}'_{it} \boldsymbol{\beta} + u_{it}$, i = 1, ..., N, t = 1, ..., T

•
$$T \to \infty$$
 and $Cor[u_{it}, u_{j,t-k}] = 0$ for $k > m$.

• Then panel HAC variance estimate

$$\widehat{\mathsf{V}}_{\textit{panelHAC}}[\widehat{\boldsymbol{\beta}}_{\textit{OLS}}] = (\mathbf{X}'\mathbf{X})^{-1}\mathsf{E}\left[\widehat{\boldsymbol{\Omega}}_0 + \sum_{k=1}^m (\widehat{\boldsymbol{\Omega}}_k + \widehat{\boldsymbol{\Omega}}'_k)\right] (\mathbf{X}'\mathbf{X})^{-1},$$

where $\widehat{\Omega}_k = (1 - \frac{k}{m+1}) \sum_t \sum_j \widehat{u}_{it} \widehat{u}_{j,t-k} \mathbf{x}_{it} \mathbf{x}'_{j,t-k}$.

• Stata add-on command xtscc, due to Hoechle (2007).

2.10 Panel Application

• To come.

-

・ロト ・回ト ・ヨト

2.11 Design-based inference

- Let $Y = f(D, Z, \varepsilon)$ where
 - D is treatment variable
 - Z is other variables (called "attributes" rather than "controls")
 - ε is error.
- Randomness may potentially come from U, Z, ε and from sample S from the population.
- Traditional approaches
 - randomness is due to model errors ε (called "model" approach)
 - \blacktriangleright randomness is due to selection of sample S from the population
 - * problem if sample is the population e.g. states
 - * model-based approach presumes a superpopulation of states.

くほと くほと くほと

Design-based inference summary

- Design-based approach (newer)
 - randomness is due to assignment of treatment D
 - no role for model error
 - also consider sampling.
- Abadie, Athey, Imbens, Wooldridge (2020, Ecta) consider heteroskedastic case.
- Abadie, Athey, Imbens, Wooldridge (2023, QJE) consider clustered case
 - binary treatment
 - potential outcomes framework with potential outcomes not random
 - heterogeneous effects
 - no attributes.
Design-based inference summary

- AAIW (2023, QJE) clustered case is too complicated to detail here.
- They propose two asymptotically equivalent variance estimators
 - analytical
 - two-stage bootstrap
- Can implement using the Stata add-ons ccv and tcsb of Clarke and Pailañir (2024).

Design-based inference summary (continued)

• The design-based cluster method can lead too much smaller standard errors than CV1-CV3 when

- most clusters are sampled
- treatment varies within cluster
- treatment effects vary across clusters
- there are many observations per cluster.
- Big decision
 - is there no role for a model error?
- Also generalizability
 - current work generalize to binary treatment with attribute variables.

3. Beyond one-way clustering

- Richer forms of clustering than one-way
 - Multi-way clustering
 - Dyadic clustering
- Other topics for one-way
 - Few treated clusters
 - Feasible GLS
 - Instrumental Variables
 - m-estimators and GMM

3.1 Two-way Clustering

- What if have two non-nested reasons for clustering?
 - e.g. regress individual wages on job injury rate in industry and on job injury rate on occupation
 - e.g. matched employer employee data.
- Obtain three different cluster-robust "variance" matrices by
 - cluster-robust in (1) first dimension, (2) second dimension, and
 (3) intersection of the first and second dimensions
 - add the first two variance matrices and, to account for double-counting, subtract the third.

$$\widehat{\mathsf{V}}_{\mathsf{two-way}}[\widehat{\pmb{\beta}}] = \widehat{\mathsf{V}}_{\mathcal{G}}[\widehat{\pmb{\beta}}] + \widehat{\mathsf{V}}_{\mathcal{H}}[\widehat{\pmb{\beta}}] - \widehat{\mathsf{V}}_{\mathcal{G}\cap\mathcal{H}}[\widehat{\pmb{\beta}}]$$

- A simpler more conservative estimate drops the third term
 - this guarantees that $\widehat{V}_{two-way}[\widehat{\beta}]$ is positive definite.

Two-way Application

- Two-way on country and ethnicity (murdock_name)
- CV1-based standard error is 0.0297
 - close to 0.0292 for CV1 one-way on country
 - larger than 0.0216 for CV1 one-way on ethnicity (murdock_name)

reg trust3 exports \$base_regressors, vce(cluster country murdock_name)
 note: multiway-cluster variance-covariance matrix is not positive semidefinite.

Linear regression	Number of obs = 19,733
Clusters per comb.:	Cluster comb. = 3
min = 17	F(49, 16) = .
avg = 143	Prob > F = .
max = 226	R-squared = 0.1960
	Adj R-squared = 0.1928
	Root MSE = 0.9891

(Std. err. adjusted for multiway clustering)

74

	trust3	Coefficient	Robust std. err.	t	P> t	[95% conf. interval]	
	exports	110552	.0296875	-3.72	0.002	17348680476173	
					< c	→ < @> < ≥> < ≥> < ≥	9
. C	Colin Cameron and Douglas L. Mille	r,. L 🥄	Spatially Correl	ated Data		April 7, 2025	40

Two-way Clustering

- Independently proposed by
 - Cameron, Gelbach, and Miller (2006; 2011, JBES) in econometrics
 - Miglioretti and Heagerty (2006, AJE) in biostatistics
 - ► Thompson (2006; 2011, JFE) in finance
 - Extends to multi-way clustering.
- Theory provided by Davezies, D'Haultfoeuille and Guyonvarch (2021, *AS*), Menzel (2021, *Ecta*), and MacKinnon, Nielsen and Matthew Webb (2021, *JBES*).
- MacKinnon, Nielsen and Matthew Webb (2024, WP)
 - ▶ good results using the jackknife (CV3) rather than CV1
 - have Stata add-on twowayjack at http://qed.econ.queensu.ca/pub/faculty/mackinnon/twowayjack/
- Chiang, Hansen and Sasaki (2024, *REStat*) panel add extra terms.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3.2 Dyadic Clustering

- A dyad is a pair. An example is country pairs.
- The errors for two pairs are correlated with each other if they have one person in common.
 - Call the pairs (g, h) and (g', h')
 - Two-way picks up error correlation for cases with g = g' and h = h'
 - Dyadic-robust additionally picks up g = h' and h = g'.
- Fafchamps and Gubert (2007, JDE)
 - provide variance matrix
 - apply to a sparse network where it makes little difference.
- Cameron and Miller (2014, WP)
 - apply to international trade data where the network is dense and find it makes a big difference
 - we are currently finishing an updated paper.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Dyadic Clustering (continued)

- Aronow and Assenova (2015, Political Analysis)
 - prove variance estimate but not asymptotic normal distribution.
- Tabord-Meehan (2018, JBES)
 - ▶ use a central limit theorem for dependency graphs (S. Jannson (1988)).
- Davezies, D'Haultfoeuille and Guyonvarch (2021, AS)
 - provides empirical process theory that assumes exchangeability and propose a pigeonhole bootstrap.
- Still not used much
 - especially for gravity model of trade.

Networks

- Dyadic data are network data.
- Graham (2022a, 2022b) provides theory for dyadic data under exchangeability from a network perspective.
- Many (but not all) networks are sparse.
- One issue is Data-determined clusters
 - ► Cao et al (2022, WP) and Leung (2023, *Ecta*).

3.3 Few treated clusters

- Few treated clusters
 - often arises especially in differences-in-differences settings
 - basic cluster-robust inference can work poorly.
- MacKinnon and Webb (2018, PM)
 - extreme problem if only one treated cluster as then the OLS residuals in that cluster sum to zero
 - this leads to too small a variance estimate.
- Solutions often require strong assumptions such as
 - exchangeability within cluster
 - homogeneity across cluster
 - symmetry
 - identification can be obtained using only within-cluster estimates.

Few treated clusters (continued)

- Wild cluster bootstrap with few (treated) clusters
 - MacKinnon and Webb (2018, *EJ*)
- T distribution for t statistics from cluster-level estimates
 - Ibragimov and Müller (2010, JBES)
 - ★ only within-group variation is relevant, separately estimate $\hat{\beta}_g s$ and average, G small and $N_g \rightarrow \infty$.

$$\star$$
 rules out $y_{ig} = \mathbf{x}'_{ig} \boldsymbol{\beta} + \mathbf{z}'_{g} \gamma + u_{ig}$

- Bester, Conley and Hansen (2011, JE) closely related.
- Ibragimov and Müller (2016, REStat)
 - ★ extend to allow treated and untreated groups.
- Difference in difference settings
 - Conley and Taber (2011) assume exchangeability and have fixed *T*, fixed treated clusters, number of control clusters → ∞
 - Ferman and Pinto (2019) extend this to (known) heteroskedastic errors.

Image: A math a math

Randomization inference

- A permutation test (Fisher) provides a test of exact size.
- For settings where data are exchangeable under the null hypothesis
 - e.g. two-sample difference in means test with two samples from the same distribution
- The procedure:
 - ▶ 1. Compute the test statistic using the original sample.
 - > 2. Recompute this test statistic for every permutation of the data.
 - ▶ 3. p-value = fraction of times permuted test statistic ≥ original sample test statistic.

Randomization inference (continued)

- Extends to a regressor of interest that is uncorrelated with other regressors
 - e.g. if the regressor is a randomly assigned treatment.
- Young (2019, *QJE*) does this and compares to conventional methods and bootstrap.
- MacKinnon and Webb (2020, *JE*) consider when treatment is not randomly assigned.
- MacKinnon and Webb (2019, book chapter) adjust when there are few possible randomizations.

Randomization inference (continued)

- Canay, Romano and Shaikh (2017, Ecta)
 - \blacktriangleright extend to symmetric limiting distribution of a function of the data under H_0
 - covers DinD with few clusters and many observations per cluster.
- Cai, Kim and Shaikh (2021)
 - Stata and R packages to implement in linear models with few clusters.
- Hagemann (2019, *JE*)
 - assigns placebo treatments to untreated clusters to get nearly exact sharp test of no effect of a binary treatment.
- Hagemann (2020)
 - a rearrangement test for a single treated cluster with a finite number of heterogeneous clusters.
- Hagemann (2021)
 - adjusts permutation inference to get non-sharp test on binary treatment with finitely many heterogeneous clusters.

3.4 Feasible GLS

- Potential efficiency gains for feasible GLS compared to OLS.
- And for one-way clustering there is a cluster-robust VCE (as $G
 ightarrow \infty$)

$$\widehat{\mathsf{V}}_{\mathsf{CR}}[\widehat{\boldsymbol{\beta}}_{\mathsf{FGLS}}] = \left(\mathbf{X}'\widehat{\Omega}^{-1}\mathbf{X}\right)^{-1} \left(\sum_{g=1}^{\mathsf{G}}\mathbf{X}'_{g}\widehat{\Omega}_{g}^{-1}\widehat{\mathbf{u}}_{g}\widehat{\mathbf{u}}'_{g}\widehat{\Omega}_{g}^{-1}\mathbf{X}_{g}\right) \left(\mathbf{X}'\widehat{\Omega}^{-1}\mathbf{X}\right)^{-1}$$

- Stata offers many FGLS estimators with CR standard errors.
- Yet this is not done much in economics.
- Brewer and Crossley (2018, JEM)
 - panel data with cluster-specific fixed effects and AR(2) error and bias-adjust
 - find much better test size performance using BDM data.

3.5 Instrumental variables

- Cluster-robust variance generalizes immediately
 - main focus is on cluster-robust inference with weak instruments.
- Chernozhukov and Hansen (2008, *EL*)
 - Cluster-robust version of Anderson-Rubin test is immediate
 - AR has no power loss in just-identified single endogenous regressor case.
- Weak instruments diagnostics
 - First-stage F-statistic should be cluster-robust.
- Current feeling is that if concerned about weak instruments then do Anderson-Rubin directly and skip the first stage F-statistic as screen.
- Young (2021) considers leverage and clustering in IV applications.

3.6 Nonlinear m-estimators and GMM

- Cluster-robust methods extend to nonlinear estimators
 - e.g. logit and nonlinear GMM.
 - e.g. generalized estimating equations (Liang and Zeger 1986)
 - replace $\mathbf{X}'_{g} \hat{\mathbf{u}}_{g}$ with the score for the cluster.
- Kline and Santos (2012, EM)
 - wild score bootstrap
 - this extends to nonlinear models such as logit and probit
 - Stata addon boottest includes this.

GMM

- Cluster-robust extends to GMM.
- Hansen and Lee (2019, JE)
 - provide very general asymptotic theory for clustered samples
- Hansen and Lee (2021, Ecta)
 - inference for Iterated GMM under misspecification
 - consider heteroskedastic errors (journal dropped clustering).
- Hansen and Lee (2020, WP)
 - also has clustered errors.
- Hwang (2019, *JE*)
 - two-step GMM fixed-G asymptotics with recentering of the CRVE used at the second step.

3.7 Quantile regression

- Parente and Silva (2016, JEM)
 - quantile regression with clustered data.
- Yoon and Galvao (2020, QE)
 - cluster-robust inference for panel quantile regression models with individual fixed effects and serial correlation.
- Hagemann (2017, JASA)
 - Cluster-robust bootstrap inference.

3.8 Machine learning prediction and clustering

- Cameron and Trivedi (2022, chapter 28) provide an accessible introduction to machine learning.
- Leading ML methods used by econometricians in order of current usage
 - lasso (and to a lesser extent ridge)
 - random forests (collections of regression trees)
 - neural networks (including deep nets).
- For lasso linear regression with independent data choose m eta to minimize

$$\blacktriangleright \quad Q_{\lambda}(\beta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{x}'_i \beta)^2 + \lambda \sum_{j=1}^{p} \kappa_j |\beta_j|$$

 \star where in the simplest case the regressors are standardized and $\kappa_j = 1$.

- With clustered data we could use the same objective function.
- Stata instead uses a weighted average

•
$$Q_{\lambda}(\beta) = \frac{1}{G} \sum_{g=1}^{G} \left\{ \frac{1}{N_g} \sum_{i=1}^{N_g} (y_i - \mathbf{x}'_i \beta)^2 \right\} + \lambda \sum_{j=1}^{p} \kappa_j |\beta_j|$$

same as simple unweighted in the case of balanced clusters.

Causal machine learning

- A key general paper for double/debiased ML is Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, J. (2018, EJ).
- A leading example is the partial linear model with scalar regressor of interest d and many potential controls x_c
 - $y = \alpha d_i + g(\mathbf{x}_c) + u$ where $g(\cdot)$ is unspecified.
- Then
 - a machine learner is used to approximate $g(\mathbf{x}_c)$
 - estimation of α is based on an "orthogonalized" moment condition that enables standard inference on α despite the first-stage use of a machine learner
 - performance is improved by using cross fitting
 - * a bigger part of the data is used in the ML stage and the smaller remainder is used in second stage estimation of α .

Causal machine learning and clustered data

- With clustering the cross fitting needs to be adapted.
- For one-way clustering (such as panel data)
 - Belloni, Chernozhukov, Hansen, and Damien Kozbur (2016, JBES)
 - cross fitting keeps clusters intact.
- For two-way clustering (such as panel data)
 - Chiang, Kato, Ma and Sasaki (2022, JBES)
 - cross fitting in simplest case splits sample in each direction in half giving 2² = 4 distinct groups.
- For dyadic clustering (such as panel data)
 - Chiang, Kato, Ma and Sasaki (2022, WP)
 - a more complex cross fitting is proposed.

4. Inference with Spatially Dampening Correlation

- The clustering approach assumes observations can be grouped into blocks, with errors uncorrelated across blocks.
 - e.g. region-level clustering assumes independence across regions.
- A richer approach may allow correlation with other regions, with correlation dampening in distance
 - such correlation is called spatial correlation.
- Theory for spatial correlation is an extension of that for time series.
- For time series correlation the unit is in time.
- By contrast are many ways to model spatial correlation
 - e.g. For geospatial data one could use inverse distance or inverse distance squared.

4.1 How to Measure Spatial Distance

- Most often geospatial distance
 - using latitude and longitude tricky due to curvature of the earth.
- But could be e.g. economic distance.

4.2 Spatial-HAC Standard Errors

- Suppose that any error correlation disappears for observations more than distance δ apart.
- Then we use $(d_{ij}$ is the distance between i and j)

$$\widehat{\mathsf{V}}_{spatial}[\widehat{oldsymbol{eta}}] = (\mathbf{X}'\mathbf{X})^{-1} (\sum_{d_{ij} < \delta} \sum \kappa_{ij} \mathbf{x}_i \mathbf{x}_j' \widehat{u}_i \widehat{u}_j) (\mathbf{X}'\mathbf{X})^{-1}.$$

- The obvious variance matrix estimator sets $\kappa_{ij} = \mathbf{1}[d_{ij} \leq \delta]$
 - this can lead to a variance matrix that is not positive semi-definite.
- So Conley (1999) proposed using $\kappa_{ij} = k(d_{ij}, \delta) \times \mathbf{1}[d_{ij} \leq \delta]$ where $k(\cdot)$ are kernel weights such as Bartlett weights $k(d_{ij}, \delta) = (1 - d_{ij}/\delta).$
 - similar to Newey-West HAC for time series.
- Consistency requires that spatial correlation disappears in a large enough fraction of the $N \times (N-1)$ error correlations
 - this clearly depends on the application.

5.2 Measuring Distance

- Distance can be geographic distance, economic distance, inclusion (or not) in the same group (region or peer group or), whether or not a border is shared (contiguity),
- Geographic location is recorded using latitude and longitude.
 - Lines of longitude are vertical lines that pass through the poles
 - Lines of latitude are horizontal rings around the globe.
- If we move one degree of latitude, such as from 31⁰ north to 32⁰ north, then we move approximately 69 miles.
- If instead we move one degree of longitude east or west, such as from 31⁰ east to 32⁰ east, then the distance ranges greatly from 69 miles at the equator to 0 miles at a pole.
- To correctly calculate Euclidean distance between two points, data need to be converted from Cartesian coordinates (latitude and longitude) for a globe to coordinates on a plane, called planar (or rectangular) coordinates.
- There are N^2 distances to compute, so use specialized software.

4.3 Subsequent Inference

- Wald test is asymptotically normal.
- Asymptotic theory may not kick in if spatial correlation is slow to disappear as distance increases.
- See finite-sample adjustments below.

4.3 Application

- Use Nunn and Watchekon data example.
- Use Stata add-on command acreg due to Colella, Lalive, Sakalli, and Thoenig (2020)
- trust3 exports, bartlett spatial distcutoff(500) /// latitude(centroid_lat) longitude(centroid_long)
- This yields same standard errors as just cluster on *ethnicity*.
- Reason is that people of the same ethnicity have the same centroid_lat and centroid_long
- And these range greatly: latitude -32.7 $^{\rm 0}$ to 27.8 $^{\rm 0}$ and longitude -16.4 $^{\rm 0}$ to 49.2 $^{\rm 0}.$

Application (continued)

• Plot of latitude on longitude shows three clusters.

4.4 Finite-Sample Adjustments

- Key paper is Conley and Kelly (2025, JIE).
- Consider studies with spatial correlation that does not dampen sufficiently for Conley spatial HAC to work well.
- Then should prewhiten the data
 - use a spatial basis rather than e.g. quadratic in latitude and longitude
 - ▶ use k-medoids (a generalization of k-means) to select just a few clusters
 - use Bester, Conley and Taber (2011) to do inference with a few clusters and many observations per cluster.
 - also has placebo tests.
- Important paper that shows many studies greatly overstate precision of estimates.

Other Work

- Müller and Watson (2022, 2023) propose an alternative approach to spatial correlation robust inference.
 - using spatial-correlation principal components.
- Müller and Watson (2024) consider spatial unit roots.
- Xu and Wooldridge (2022) consider a design-based approach to spatial correlation.

5.1 Spatial Autoregressive Models

- The preceding sections consider inference for regression of y on x under relatively weak assumptions.
- Much of the spatial literature instead considers more parametric models that specify the relationship between observations and/or between errors, called spatial autocorrelation.
 - > qualitatively similar to autoregressive models for time series.
- Standard econometrics references are Anselin (1988) and LeSage and Pace (2009).
- A standard statistics text is Cressie and Wilke (2011).
- Stata spregress and related commands estimate these models
 - Cameron and Trivedi (2022, chapter 26) provide a detailed summary.

- 4 同 6 4 日 6 4 日 6

Spatial autoregressive Models

• The simplest Cliff-Ord spatial model, due to Cliff and Ord (1973),

• specifies
$$y_i = \lambda \sum_{j=1}^{N} w_{ij} y_j + u_i$$

- where the w_{ij} are specified by the researcher (with $w_{ii} = 0$)
- and λ is a parameter to be estimated.
- More generally we introduce other regressors.
- SAR(1): spatial autoregressive in the mean of order one

• specifies
$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + \lambda \times \sum_{j=1}^N w_{ij} y_j + u_i$$
 (with $w_{ii} = 0$)

• or
$$\mathbf{y} = \lambda \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u}$$
.

• Alternatively spatial dependence may be in the error

• specify
$$u_i = \rho \sum_{j=1}^{N} w_{ij} u_j + \varepsilon_i$$
, with $w_{ii} = 0$, so $\mathbf{u} = \rho \mathbf{W} \mathbf{u} + \varepsilon$.

• Combining an (SAR1,1) model

•
$$\mathbf{y} = \lambda \mathbf{W}_1 \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u}$$
 and $\mathbf{u} = \rho \mathbf{W}_2 \mathbf{u} + \boldsymbol{\varepsilon}$.

6. Conclusion

- Where clustering is present it is important to control for it.
- Most work is for OLS and one-way clustering.
- Often clusters are very unbalanced / heterogeneous and/or "few" clusters
 - then use CV3 or CV2.
- And many spatial applications are ones for which spatial dependence does not disappear fast enough to use Conley spatial HAC.

Some Key References

- Abadie, Alberto, Susan Athey, Guido W. Imbens, and Jeffrey M. Wooldridge (2023), "When should you adjust standard errors for clustering?" Quarterly Journal of Economics, 138(1), 1-35.
- Abadie, Alberto, Susan Athey, Guido W. Imbens, and Jeffrey M. Wooldridge (2020), "Sampling-based versus design-based uncertainty in regression analysis," Econometrica, 88(1), 265–296.
- Bell, R.M., and McCaffrey, D.F. (2002), "Bias Reduction in Standard Errors for Linear Regression with Multi-Stage Samples", Survey Methodology, 28(2), pp. 169-181.
- Bester, Conley and Taber (2011), "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, 165, 137-151.
- Cameron, A. Colin, Jonah G. Gelbach, and Douglas L. Miller (2008), "Bootstrap-Based Improvements for Inference with Clustered Errors," Review of Economics and Statistics 90, 414-427.

(日) (同) (三) (三)

- Cameron, A. Colin, Jonah G. Gelbach, and Douglas L. Miller (2011), "Robust Inference with Multi-way Clustering," Journal of Business and Economic Statistics, 29, 238-249.
- Cameron, A. Colin, and Douglas L. Miller (2014), "Robust Inference for Dyadic Data,"

https://cameron.econ.ucdavis.edu/research/dyadic_cameron_miller_december2014_

- Cameron, A. Colin, and Douglas L. Miller (2015), "A Practitioner's Guide to Cluster-Robust Inference, Journal of Human Resources, 50(2), 317-373.
- Clarke, Damian and Daniel Pailañir (2024), "TSCB-CCV", https://github.com/Daniel-Pailanir/TSCB-CCV.
- Colella, Fabrizio; Lalive, Rafael; Sakalli, Seyhun Orcan; Thoenig, Mathias. (2019), "Inference with Arbitrary Clustering, IZA Discussion Paper n. 12584.
- Colella, Fabrizio; Lalive, Rafael; Sakalli, Seyhun Orcan; Thoenig, Mathias. (2020), "Acreg: arbitrary correlation regression."
- Conley, Timothy G. (1999), "GMM Estimation with Cross Sectional Dependence", Journal of Econometrics, 92, 1-45.
- Conley, Timothy G. and Morgan Kelly (2025), "The standard errors of persistence", Journal of International Economics.
- Conley, Timothy G., Morgan Kelly and Damein Kozbur (2024) "Improved Spatial Dependence Robust Inference via'Pre-Whitening," Working paper ETH Zurich.
- Hansen, Bruce E, (2024), "Jackknife Standard Errors for Clustered Regression," working paper.
- Ibragimov, Rustam, and Ulrich K. Müller (2010), "T-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business and Economics Statistics, 28, 453-468.
- Ibragimov, Rustam and Ulrich K. Müller (2016), "Inference with few heterogeneous clusters", Review of Economics and Statistics, 98(1), 83-96.
- Imbens, Guido W., and Michal Kolesar (2016), "Robust Standard Errors in Small Samples: Some Practical Advice," Review of Economics and Statistics, 98, 701-712.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- MacKinnon, James G., Morten Ø. Nielsen and Matthew D. Webb (2023a), "Cluster-robust inference: A guide to empirical practice", Journal of Econometrics, 232(2), 272-299.
- MacKinnon, James G., Morten Ø. Nielsen and Matthew D. Webb Webb (2023b), "Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust" The Stata Journal, 23(4), 942-982.
- MacKinnon, James G., Morten Ø. Nielsen and Matthew D. Webb (2023c), "Fast and reliable jackknife and bootstrap methods for cluster-robust inference," Journal of Applied Econometrics, 38(5), 671-694.
- MacKinnon, James G., Morten Ø. Nielsen and Matthew D. Webb Webb (2024), "Jackknife Inference with Two-Way Clustering." https://arxiv.org/pdf/2406.08880.
- Müller, Ulrich K. and Mark W. Watson (2022), "Spatial Correlation Robust Inference," Econometrica, 90, 2901–2935.
- Müller, Ulrich K., and Mark W. Watson (2023), "Spatial Correlation Robust Inference in Linear Regression and Panel Models," Journal of Business and Economics Statistics, 41(4), 1050-1064.

- Nunn, Nathan and Leonard Wantchekon (2011), "The Slave Trade and the Origins of Mistrust in Africa," American Economic Review, 101(7), 3221-3252.
- Roodman, David, Morten Ø. Nielsen, James G. MacKinnon, and Matthew D.
 Webb (2019), "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, 19(1), 4-60.
- Jeffrey M Wooldridge, Jeffrey M. (2023), "What is a standard error? (And how should we compute it?)", Journal of Econometrics, 237(2).
- Xu, Ruonan and Jeffrey M Wooldridge (2022), "A Design-based Approach to Spatial Correlation".