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This chapter presents inference for many commonly-used estimators { least squares, gen-
eralized linear models, generalized method of moments, and generalized estimating equa-
tions { that are asymptotically normally distributed. Section 1 focuses on Wald con�-
dence intervals and hypothesis tests based on estimator variance matrix estimates that are
heteroskedastic-robust and, if relevant, cluster-robust. Section 2 summarizes tests of model
adequacy and model diagnostics. Section 3 presents family-wise error rates and false dis-
covery rates that control for multiple testing such as subgroup analysis. Section 4 presents
bootstrap and other resampling methods that are most often used to estimate the variance
of an estimator. Bootstraps with asymptotic re�nement are also presented.

1 Inference

Most estimators in health applications are m-estimators that solve estimating equations of
the form XN

i=1
gi(b�) = 0; (1)

where � is a q � 1 parameter vector, i denotes the ith of N observations, gi(�) is a q � 1
vector, and often gi(�) = gi(yi;xi;�) where y denotes a scalar dependent variable and
x denotes the regressors or covariates. For ordinary least squares, for example, gi(�) =
(yi � x0i�)xi. Nonlinear least squares, maximum likelihood (ML), quantile regression and
just-identi�ed instrumental variables estimators are m-estimators. So too are generalized
linear model estimators, extensively used in biostatistics, that are quasi-ML estimators based
on exponential family distributions, notably Bernoulli (logit and probit), binomial, gamma,
normal, and Poisson.
The estimator b� is generally consistent if E[gi(�)] = 0. Statistical inference is based on

the result that b� is asymptotically normal with mean � and variance matrix V[b�] that is
estimated by bV[b�] = bA�1bBbA�10; (2)

where N�1 bA and N�1bB are consistent estimates of A = E[N�1P
iHi(�)], where Hi(�) =

@gi(�)=@�
0, and B = E

h
N�1P

i

P
j gi(�)gj(�)

0
i
. The variance is said to be of \sandwich

form", since bB is sandwiched between bA�1 and bA�10. The estimate bA is the observed
Hessian

P
iHi(b�), or in some cases the expected Hessian E [PiHi(�)]jb�. By contrast, the

estimate bB, and hence bV[b�] in (2), can vary greatly with the type of data being analyzed
and associated appropriate distributional assumptions.
Default estimates of V[b�] are based on strong distributional assumptions, and are typi-

cally not used in practice. For ML estimation with density assumed to be correctly speci�ed
B = �A, so the sandwich estimate simpli�es to bV[b�] = �bA�1. Qualitatively similar sim-
pli�cation occurs for least squares and instrumental variables estimators when model errors
are independent and homoskedastic.
More generally, for data independent over i, bB = N

N�q
P

i gi(
b�)gi(b�)0, where the mul-

tiple N=(N � q) is a commonly-used �nite sample adjustment. Then the variance matrix
estimate in (2) is called the Huber, White, or robust estimate { a limited form of robust-
ness as independence of observations is assumed. For OLS, for example, this estimate is
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valid even if independent errors are heteroskedastic whereas the default requires errors to be
homoskedastic.
Often data are clustered, with observations correlated within cluster but independent

across clusters. For example, individuals may be clustered within villages or hospitals, or
students clustered within class or within school. Let c denote the typical cluster, and sum
gi(�) for observations i in cluster c to form gc(�). Then bB = C

C�1
PC

c=1 gc(
b�)gc(b�)0, where C

is the number of clusters, and the variance matrix estimate in (2) is called a cluster-robust
estimate. The number of clusters should be large as the asymptotic theory requires C !1,
rather than N !1. The clustered case also covers short panels with few time periods and
data correlated over time for a given individual but independent across individuals. Then the
clustering sums over time periods for a given individual. Wooldridge (2003) and Cameron
and Miller (2011) survey inference with clustered data.
Survey design can lead to clustering. Applied biostatisticians often use survey estimation

methods that explicitly control for the three complex survey complications of weighting,
strati�cation and clustering. Econometricians instead usually assume correct model speci�-
cation conditional on regressors (or instruments), so that there is no need to weight; ignore
the potential reduction in standard error estimates that can occur with strati�cation; and
conservatively control for clustering by computing standard errors that cluster at a level such
as state (region) that is usually higher than the primary sampling unit.
For time series data, observations may be correlated over time. Then the heteroskedastic

and autocorrelation consistent (HAC) variance matrix estimate is used; see Newey and West
(1987). A similar estimate can be used when data are spatially correlated, with correlation
depending on distance and independence once observations are more than a given distance
apart. This leads to the spatial HAC estimate; see Conley (1999).
Note that in settings where robust variance matrix estimates are used, additional assump-

tions may enable more e�cient estimation of � such as feasible generalized least squares and
generalized estimating equations, especially if data are clustered.
Given b� asymptotic normal with variance matrix estimated using (2), the Wald method

can be used to form con�dence intervals and perform hypothesis tests.
Let � be a scalar component of the parameter vector �. Since b� a� N [�, bV[b�]], we

have b� a� N
h
�, s2b�

i
, where the standard error sb� is the square root of the relevant diagonal

entry in bV[b�]. It follows that (b�� �)=sb� a� N [0, 1]. This justi�es use of the standard normal
distribution in constructing con�dence intervals and hypothesis tests for sample size N !1.
A commonly-used �nite-sample adjustment uses (b� � �)=sb� a� T (N � q), where T (N � q) is
the students T distribution with (N � q) degrees of freedom, N is the sample size, and K
parameters are estimated.
A 95% con�dence interval for � gives a range of values that 95% of the time will include the

unknown true value of �. The Wald 95% con�dence interval is b��c:025�sb�, where the critical
value c:025 is either z[:025] = 1:96, the :025 quantile of the standard normal distribution, or
t[:025] the :025 quantile of the T (N�q) distribution. For example, c:025 = 2:042 if N�q = 30.
For two-sided tests of H0 : � = �� against Ha : � 6= ��, the Wald test is based on

how far jb� � ��j is from zero. Upon normalizing by the standard error, the Wald statistic

w = (b�� ��)=sb� is asymptotically standard normal under H0, though again a common �nite
sample correction is to use the T (N � q) distribution. We reject H0 at the 5% signi�cance
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level if jwj > c:025. Often �� = 0, in which case w is called the t-statistic and the test is called
a test of statistical signi�cance. Greater information is conveyed by reporting the p-value,
the probability of observing a value of w as large or larger in absolute value under the null
hypothesis. Then p = Pr[jW j > jwj], where W is standard normal or T (N � q) distributed.
We reject H0 : � = �

� against H0 : � 6= �� at level 0:05 if p < 0:05.
More generally we may be interested in performing joint inference on more than one pa-

rameter, such as a joint test of statistical signi�cance of several parameters, or on functions(s)
of the parameters. Let h(�) be an h�1 vector function of �, possibly nonlinear, where h � q.
A Taylor series approximation yields h(b�) ' h(�) + bR(b� � �), where bR = @h(�)=@�0jb� is
assumed to be of full rank h (the nonlinear analog of linear dependence of restrictions).

Given b� � � a� N [0, bV[b�]] this yields h(b�) a� N [h(�), bRbV[b�]bR0]. The term delta method is

used as a �rst derivative is taken in approximating h(b�).
Con�dence intervals can be formed in the case that h(�) is a scalar. Then we use h(b�)�

c:025 � [bRbV[b�]bR0]1=2. A leading example is a con�dence interval for a marginal e�ect in a
nonlinear model. For example, for E[yjx] = exp(x0�) the marginal e�ect for the jth regressor
is @E[yjx]=@xj = exp(x0�)�j. When evaluated at x = x� this equals exp(x�0b�)b�j which is a
scalar function h(b�) of b�; the corresponding average marginal e�ect is Pi exp(x

0
i
b�)b�j.

A Wald test of H0 : h(�) = 0 against Ha : h(�) 6= 0 is based on the closeness of h(b�) to
zero, using

w = h(b�)0[bRbV[b�]bR0]�1h(b�) a� �2(h) (3)

under H0. We reject H0 at level 0:05 if w > �
2
:95(h). An F version of this test is F = w=h,

and we reject at level 0:05 if w > F:95(h;N � q). This is a small sample variation, analogous
to using the T (N � q) rather than the standard normal.
For ML estimation the Wald method is one of three testing methods that may be used.

Consider testing the hypothesis that h(�) = 0. Let e� denote the ML estimator obtained by
imposing this restriction, while b� does not impose the restriction. The Wald test uses only b�
and tests the closeness of h(b�) to zero. The log likelihood ratio test is based on the closeness
of L(b�) to L(e�) where L(�) denotes the log-likelihood function. The score test uses only e�
and is based on the closeness to zero of @L(�)=@�je�, where L(�) here is the log-likelihood
function for the unrestricted model.
If the likelihood function is correctly speci�ed, a necessary assumption, these three tests

are asymptotically equivalent. So the choice between them is one of convenience. The Wald
test is most often used, as in most cases b� is easily obtained. The score test is used in
situations where estimation is much easier when the restriction is imposed. For example, in
a test of no spatial dependence versus spatial dependence it may be much easier to estimate
� under the null hypothesis of no spatial dependence. The Wald and score tests can be
robusti�ed. If one is willing to make the strong assumption that the likelihood function is
correctly speci�ed, then the likelihood ratio test is preferred due to the Neyman-Pearson
lemma and because, unlike the Wald test, it is invariant to reparameterization.
Generalized method of moments (GMM) estimators are based on a moment condition of

the form E[gi(�)] = 0. If there are as many components of g(�) as of � the model is said to
be just-identi�ed and the estimate b� solvesPi gi(

b�) = 0, which is (1). Leading examples in
the biostatistics literature are generalized linear model estimators and generalized estimating
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equations estimators. If instead there are more moment conditions than parameters there is
no solution to (1). Instead we make

P
i gi(

b�) as close to zero as possible using a quadratic
norm. The method of moments estimator minimizes

Q(�) =
�XN

i=1
gi(�)

�0
W
�XN

i=1
gi(�)

�
;

whereW is a symmetric positive de�nite weighting matrix and the best choice ofW is the
inverse of a consistent estimate of the variance of

P
i gi(�).

The leading example of this is two-stage least squares (2SLS) estimation for instrumental
variables estimation in overidenti�ed models. Then gi(�) = zi(yi � x0i�), and it can be
shown that the 2SLS estimator is obtained ifW = (Z0Z)�1. The estimated variance matrix

is again of sandwich form (2), though the expressions for bA and bB are more complicated.
For instrumental variables estimators with instruments weakly correlated with regressors an
alternative asymptotic theory may be warranted. Bound, Jaeger and Baker (1995) outline
the issues and Andrews, Moreira, and Stock (2007) compare several di�erent test procedures.

2 Model Tests and Diagnostics

The most common speci�cation tests imbed the model under consideration into a larger
model and use hypothesis tests (Wald, likelihood ratio or score) to test the restrictions that
the larger model collapses to the model under consideration. A leading example is test of
statistical signi�cance of a potential regressor.
A broad class of tests of model adequacy can be constructed by testing the validity

of moment conditions that are imposed by a model but have not already been used in
constructing the estimator. Suppose a model implies the population moment condition

H0 : E[mi(wi;�)] = 0; (4)

where w is a vector of observables, usually the dependent variable y, regressors x and,
possibly, additional variables z. An m-test, in the spirit of a Wald test, is a test of whether
the corresponding sample moment

bm(b�) = 1

N

XN

i=1
mi(wi; b�); (5)

is close to zero. Under suitable assumptions, bm(b�) is asymptotically normal. This leads to
the chisquared test statistic

M = bm(b�)0 bV�1
m bm(b�) a� �2(rank(Vm); (6)

if the moment conditions (4) are correct, where bVm is a consistent estimate of the asymptotic

variance of bm(b�). The challenge is obtaining bVm. In some leading examples an auxiliary
regression can be used, or a bootstrap can be applied.
Especially for fully parametric models there are many candidates for mi(�). Examples

of this approach are White's information matrix test to test correct speci�cation of the
likelihood function; a regression version of the chisquared goodness of �t test; Hausman tests
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such as that for regressor endogeneity; and tests of overidentifying restrictions in a model
with endogenous regressors and an excess of instruments. Such tests are not as widely used
as they might be for two reasons. First, there is usually no explicit alternative hypothesis
so rejection of H0 may not provide much guidance as to how to improve the model. Second,
in very large samples with actual data any test at a �xed signi�cance level such as 0:05 is
likely to reject the null hypothesis, so inevitably any model will be rejected.
Regression model diagnostics need not involve formal hypothesis tests. A range of residual

diagnostic plots can provide information on model nonlinearity and observations that are
outliers and have high leverage. In the linear model a small sample correction divides the
residual yi � x0ib� by p1� hii, where hii is the ith diagonal entry in the hat matrix H =
X(X0X)�1X. Since H has rank K, the number of regressors, the average value of hii is K=n
and values of hii in excess of 2K=N are viewed as having high leverage. This result extends
to generalized linear models where a range of residuals have been proposed; McCullagh and
Nelder (1989) provides a summary. Econometricians place less emphasis on residual analysis,
compared to biostatisticians. If data sets are small then there is concern that residual analysis
may lead to over�tting of the model. And if the data set is large then there is a belief that
residual analysis may be unnecessary as a single observation will have little impact on the
analysis. But even then diagnostics may help detect data miscoding and unaccounted model
nonlinearities.
For linear models, R2 is a well understood measure of goodness of �t. For nonlinear

models a range of pseudo-R2 measures have been proposed. One that is easily interpreted is
the squared correlation between y and by, though in nonlinear models this is not guaranteed
to increase as regressors are added.
Model testing and diagnostics may lead to more than one candidate model. Standard

hypothesis tests can be implemented for models that are nested. For nonnested models that
are likelihood based, one can use a generalization of the likelihood ratio test due to Vuong
(1989), or use information criteria such as Akaike's information criteria based on �tted log-
likelihood with a penalty for the number of model parameters. For nonnested models that
are not likelihood based one possibility is arti�cial nesting that nests two candidate models
in a larger model, though this approach can lead to neither model being favored.

3 Multiple Tests

Standard theory assumes that hypothesis tests are done once only and in isolation, whereas
in practice �nal reported results may follow much pretesting. Ideally reported p values should
control for this pretesting.
In biostatistics it is common to include as control variables in a regression only those

regressors that have p < 0:05. By contrast, in economics it is common to have a preselected
candidate set of control regressors, such as key socioeconomic variables, and include them
even if they are statistically insigni�cant. This avoids pretesting, at the expense of estimating
larger models.
A more major related issue is that of multiple testing or multiple comparisons. Examples

include testing the statistical signi�cance of a key regressor in several subgroups of the
sample (subgroup analysis); testing the statistical signi�cance of a key regressor in regressions
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on a range of outcomes (such as use of a range of health services); testing the statistical
signi�cance of a key regressor interacted with various controls (interaction e�ects); and
testing the signi�cance of a wide range of variables on a single outcome (such as various
genes on a particular form of cancer). With many such tests at standard signi�cance levels
one is clearly likely to �nd spurious statistical signi�cance.
In such cases one should view the entire battery of tests as a unit. If m such tests are

performed, each at statistical signi�cance level ��, and the tests are statistically independent,
then the probability of �nding no statistical signi�cance in all m tests is (1 � ��)m. It
follows that the probability of �nding statistical signi�cance in at least one test, called the
family-wise error rate (FWER), equals � = 1� (1���)m. In order to test at FWER �, each
individual test should be at level �� = 1�(1��)m, called the Sidak correction. For example,
if m = 5 tests are conducted with FWER of � = 0:05, each test should be conducted at level
�� = 0:01021. The simpler Bonferroni correction sets �� = �=m . The Holm correction uses
a stepdown version of Bonferroni, with tests ordered by p-value from smallest to largest,
so p(1) < p(2) < � � � < p(m), and the j

th test rejects if p(j) < ��j = �=(m � j + 1). A
stepdown version of the Sidak correction uses ��j = 1� (1� �)m�j+1. These corrections are
quite conservative in practice, as the multiple tests are likely to be correlated rather than
independent.
Benjamini and Hochberg (1995) proposed an alternative approach to multiple testing.

Recall that test size is the probability of a type I error, i.e. the probability of incorrectly
rejecting the null hypothesis. For multiple tests it is natural to consider the proportion of
incorrectly rejected hypotheses, the false discovery proportion (FDP), and its expectation
E[FDP], called the false discovery rate (FDR). Benjamini and Hochberg (1995) argue that
it is more natural to control FDR than FEWR. They propose doing so by ordering tests by
p-value from smallest to largest, so p(1) < p(2) < � � � < p(m), and rejecting the corresponding
hypotheses H(1); :::; H(k) where k is the largest j for which p(j) � �j=m, where � is the
prespeci�ed FDR for the multiple tests. If the multiple tests are independent then the FDR
equals �.
In practice tests are not independent. Farcomeni (2008) provides an extensive guide

to the multiple testing literature. A recent article on estimating the FDR when tests are
correlated is Schwartzman and Lin (2011). Du
o, Glennerster, and Kremer (2008) provide a
good discussion of practical issues that arise with multiple testing and consider the FEWR
but not the FDR. White (2001) presents simulation-based methods for the related problem
of testing whether the best model encountered in a speci�cation search has better predictive
power than a benchmark model.

4 Bootstrap and Other Resampling Methods

Statistical inference controls for the uncertainty that the observed sample of size N is just
one possible realization of a set of N possible draws from the population. This typically relies
on asymptotic theory that leads to limit normal and chi-squared distributions. Alternative
methods based on Monte Carlo simulation are detailed in this section.
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4.1 Bootstrap

Bootstraps can be applied to a wide range of statistics. We focus on the most common use
of the bootstrap, to estimate the standard error of an estimator when this is di�cult to do
using conventional methods.
Suppose 400 random samples from the population were available. Then we could obtain

400 di�erent estimates of b�, and let the standard error of b� be the standard deviation of these
400 estimates. In practice, however, only one sample from the population is available. The
bootstrap provides a way to generate 400 samples by resampling from the current sample.
Essentially the observed sample is viewed as the population and the bootstrap provides
multiple samples from this population.

Let b��(1); :::; b��(B) denote B estimates where, for example, B = 400. Then in the scalar

case the bootstrap estimate of the variance of b� is
bVBoot[b�] = 1

B � 1

BX
b=1

(b��(b) � b��)2, (7)

where b�� = 1
B

PB
b=1
b��(b) is the average of the B bootstrap estimates. The square root ofbVBoot[b�], denoted seBoot[b�], is called the bootstrap estimate of the standard error of b�. In the

case of several parameters

bVBoot[b�] = 1

B � 1

BX
b=1

(b��(b) � b��)(b��(b) � b��)0;
and even more generally the bootstrap may be used to estimate the variance of functions
h(b�), such as marginal e�ects, not just b� itself.
There are several di�erent ways that the resamples can be obtained. A key consideration

is that the quantity being resampled should be i.i.d.
The most common bootstrap for data (yi;xi) that are i.i.d. is a paired bootstrap or

nonparametric bootstrap. This draws with replacement from (y1;x1); :::; (yN ;xN) to obtain
a resample (y�1;x

�
1); :::; (y

�
N ;x

�
N) for which some observations will appear more than once,

while others will not appear at all. Estimation using the resample yields estimate b��. Using
B similarly generated resamples yields b��(1); :::; b��(B). This bootstrap variance estimate is
asymptotically equivalent to the White or Huber robust sandwich estimate.
If data are instead clustered with C clusters, a clustered bootstrap draws with replace-

ment from the entire clusters, yielding a resample (y�1;X
�
1); :::; (y

�
C ;X

�
C). This bootstrap

variance estimate is asymptotically equivalent to the cluster-robust sandwich estimate.
Other bootstraps place more structure on the model. A residual or design bootstrap in

the linear regression model �xes the regressors and only resamples the residuals. For models
with i.i.d. errors the residual bootstrap samples with replacement from bu1; :::; buN to yield
residual resample bu�1; :::; bu�N . Then the typical data resample is (y�1;x1); :::; (y�N ;xN) where
y�i = x0i

b� + bu�i . If errors are heteroskedastic one should instead use a wild bootstrap; the
simplest example lets bu�i = bui with probability 0:5 and bu�i = �bui with probability 0:5.
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For a fully parameterized model one can generate new values of the dependent variable
from the �tted conditional distribution. The typical data resample is (y�1;x1); :::; (y

�
N ;xN)

where y�i is a draw from F (yjxi; b�).
Whenever a bootstrap is used in applied work the seed, the initial value of the random

number generator used in determining random draws, should be set to ensure replicability
of results. For standard error estimation B = 400 should be more than adequate.
The bootstrap can also be used for statistical inference. A Wald 95% con�dence interval

for scalar � is b� � 1:96� seBoot[b�]. An asymptotically equivalent alternative interval is the
percentile interval (b��[:025];b��[:975]) where b��[�] is the �th quantile of b��(1); :::;b��(B). Similarly, in
testing H0 : � = 0 against Ha : � 6= 0 the null hypothesis may be rejected if jwj = jb�=
seBoot[b�]j > 1:96, or if b� < b��[:025] or b� > b��[:975].
Care is needed in using the bootstrap in nonstandard situations as, for example, V[b�] may

not exist, even asymptotically, yet it is always possible to (erroneously) compute a bootstrap

estimate of V[b�]. The bootstrap can be applied if b� is root-N consistent and asymptotically
normal, and there is su�cient smoothness in the cumulative distribution functions of the
data generating process and of the statistic being bootstrapped.

4.2 Bootstrap with Asymptotic Re�nement

The preceding bootstraps are asymptotically equivalent to the conventional methods of sec-
tion 1. Bootstraps with asymptotic re�nement, by contrast, provide a more re�ned asymp-
totic approximation that may lead to better performance (truer test size and con�dence
interval coverage) in �nite samples. Such bootstraps are emphasized in theory papers, but
are less often implemented in applied studies.
These gains are possible if the statistic bootstrapped is asymptotically pivotal, meaning

its asymptotic distribution does not depend on unknown parameters. An estimator b� that is
asymptotically normal is not usually asymptotically pivotal as its distribution depends on an
unknown variance parameter. But the studentized statistic t = (b�� �0)=sb� is asymptotically
N [0; 1] under H0 : � = �0, so is asymptotically pivotal. We therefore compute in each

bootstrap resample t� = (b�� � b�)=sb�� , and use quantiles of t�(1); :::; t�(B) to compute critical
values and p-values. Note that t� is centered around b� because the bootstrap views the
sample as the population, so b� is the population value.
A 95% percentile-t con�dence interval for scalar � is (b� + t�[:025]sb�; b� + t�[:975]sb�) where t�[�]

is the �th quantile of t�(1); :::; t
�
(B). And a percentile-t Wald test rejects H0 : � = �0 against

Ha : � 6= �0 at level 0:05 if t = (b� � �0)=sb� falls outside the interval (t�[:025]; t�[:975]).
Two commonly-used alternative methods to obtain con�dence intervals with asymptotic

re�nement are the following. The bias-corrected method is a modi�cation of the percentile
method that incorporates a bootstrap estimate of the �nite-sample bias in b�. For example,
if the estimator is upward biased, as measured by estimated median bias, then the con�-
dence interval is moved to the left. The bias-corrected accelerated con�dence interval is an
adjustment to the bias-corrected method that adds an acceleration component that permits
the asymptotic variance of b� to vary with �.
Theory shows that bootstrap methods with asymptotic re�nement outperform conven-
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tional asymptotic methods as N ! 1. For example, a nominal 95% con�dence interval
with asymptotic re�nement has coverage rate of 0:95+O(N�1) rather than 0:95+O(N�1=2).
This does not guarantee better performance in typical sized �nite samples, but Monte Carlo
studies generally con�rm this to be the case. Bootstraps with re�nement require a larger
number of bootstraps than recommended in the previous subsection, since the critical values
lie in the tails of the distribution. A common choice is B = 999, with B chosen so that B+1
is divisible by the signi�cance level 100�.

4.3 Jackknife

The jackknife is an alternative resampling scheme used for bias-correction and variance
estimation that predates the bootstrap.
Let b� be the original sample estimate of �, let b�(�i) denote the parameter estimate from

the sample with the ith observation deleted, i = 1; :::; N , and let b� = N�1PN
i=1
b�(�i) denote

the average of the N jackknife estimates. The bias-corrected jackknife estimate of � equals

Nb� � (N � 1)b�, the sum of the N pseudo-values b��(�i) = Nb� � (N � 1)b�(�i) that provide
measures of the importance or in
uence of the ith observation estimating b�.
The variance of these N pseudo-values can be used to estimate V[b�], yielding the leave-

one-out jackknife estimate of variance

bVJack[b�] = � 1

N(N � 1)
XN

i=1
(b��(�i) � b�)(b��(�i) � b�)0� :

A variation replaces b� with b�.
The jackknife requires N resamples, requiring more computation than the bootstrap if N

is large. The jackknife does not depend on random draws, unlike the bootstrap, so is often
used to compute standard errors for published o�cial statistics.

4.4 Permutation Tests

Permutation tests derive the distribution of a test statistic by obtaining all possible values
of the test statistic under appropriate rearrangement of the data under the null hypothesis.
Consider scalar regression, so yi = �1+�2xi+ui, i = 1; ::; N , and Wald test of H0 : �2 = 0

based on t = b�2=sb�2 . Regress each of the N ! unique permutations of (y1; :::; yN) on the
regressors (x1; :::; xN) and in each case calculate the t-statistic for H0 : �2 = 0. Then the
p-value for the original test statistic is obtained directly from the ordered distribution of the
N ! t-statistics.
Permutation tests are most often used to test whether two samples come from the same

distribution, using the di�erence in means test. This is a special case of the preceding where
xi is an indicator variable equal to one for observations coming from the second sample.
Permutation methods are seldom used in multiple regression, though several di�erent

ways to extend this method have been proposed. Anderson and Robinson (2001) review
these methods and argue that it is best to permute residuals obtained from estimating the
model under H0, a method proposed by Freedman and Lane (1983).
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5 Conclusion

This survey is restricted to classical inference methods for parametric models. It does not
consider Bayesian inference, inference following nonparametric and semiparametric estima-
tion, or time series complications such as models with unit roots and cointegration.
The graduate-level econometrics texts by Cameron and Trivedi (2005), Greene (2012)

and Wooldridge (2010) cover especially sections 1 and 2; see also Jones (2000) for a survey
of health econometrics models and relevant chapters in this volume. The biostatistics liter-
ature for nonlinear models emphasizes estimators for generalized linear models; the classic
reference is McCullagh and Nelder (1989). For the resampling methods in section 5, Efron
and Tibsharani (1993) is a standard accessible reference; see also Davison and Hinkley (1997)
and, for implementation, Cameron and Trivedi (2010).
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