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1. A Typical Problem

Consider the problem of optimal growth (Cass-Koopmans Model). Recall that in the Solow

model the saving rate is imposed, and there is no representation of preferences. The optimal

growth model adds preferences for households, and derives an optimal saving rate. Utility

is maximized for the representative agent, given the technology that they’re faced with. The

social planner’s problem may be described as follows.

Preferences are summarized in the utility function:

L ES|� c | ' fc ���c4

Utility is assumed to be time-separable, that is, marginal utility of consumption today depends

on today’s consumption only. When households evaluate utility in the future, they discount

it by a constant factorq 	 �c assuming consumption in the future is not valued as much as

consumption today. The objective is to maximize the present discounted value of future utility:

"[
|'f

q|L ES|�

Consider the technology. Output is produced using capital as the input:

+| ' s E&|�

We could also include labor as a factor. Note that we will use&| to represent capital available

at the beginning of period|; this is capital that was accumulated in the previous period|� �.

Capital accumulation takes place through investment and saving. The law of motion for the

capital stock is:

&|n� ' &| E�� B� n �|

Where�| is the amount of investment expenditure in a period toward building up the capital

stock for the following period. Depreciation is represented byB, and is the faction of existing
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capital stock that decays away each period. We will initially assume there is 100% depreciation.

B ' �

Investment expenditure and consumption expenditure must both come from current produc-

tion, so the resource constraint for the social planner is

S| n �| ' s E&|�

Combining this with the law of motion, we will be using as our budget constraint the following:

S| n &|n� ' s E&|�

With complete depreciation, the capital stock available in a period is derived completely from

saving in the previous period. So it is convenient to regard to the variable &|n� simply as the

level of saving in period |.

The social planner problem may be written:

4@ 
tS|c&|n��

"

|'f

"[
|'f

q|L dS|o (1)

r�|� S| n &|n� ' s E&|�

The social planner chooses consumption and saving in each period to maximize utility of

the representative household. The solution is a sequence of variables S| and &|n� for all time

periods | ' fc ���c4. Finding an infinite sequence of variables is a big task. But fortunately,

this problem has a recursive structure: the problem facing the social planner in each period is

the same as that he faced last period or next period.

We will characterize the solution by a function called a policy rule, which tells what the

optimal choice is as a function of the current state of the economy. In this case we will find a

rule for choosing S| and &|n� as a function of &|c which applies in each and every period.
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2. A Deterministic Finite Horizon Problem

2.1 Finding necessary conditions

To develop some intuition for the recursive nature of the problem, it is useful first to consider

a version of the problem for a finite horizon. Assume you die in a terminal period A . We will

then consider using as a solution for the infinite horizon problem the solution we found for the

finite horizon problem, when we take a limiting case as A $4.

The problem now may be written, where we substitute the constraint into the objective

function, and thereby eliminate the consumption as a variable to choose:

4@ 
t&|n��

"

|'f

A[
|'f

q|L ds E&|�� &|n�o

Look at a section of the sum, which pertains to a generic period:

���n q|L Es E&|�� &|n�� n q|n�L Es E&|n��� &|n2� n ���

This includes all the appearances for &|n�. Take a derivative with respect to &|n�.

q|L � Es E&|�� &|n�� E��� n q|n�L � Es E&|n��� &|n2� s
� E&|n�� ' f for | 	 A

or cancelling extra q G

L � Es E&|�� &|n�� ' qL � Es E&|n��� &|n2� s
� E&|n�� for | 	 A

This is a necessary first order condition that applies to all periods prior to the terminal pe-

riod. It describes the nature of the intertemporal decision I am making about whether I should

consume or save. It says that I will raise consumption until the point where if I raise con-

sumption one more unit today, the gain in utility no longer exceeds the loss in utility tomorrow,

because there is less capital and hence less output and consumption tomorrow.

But this condition does not apply to the terminal period. In the last period of your life, you
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will not save for the future, but instead consume all that you produce:

&An� ' f

This is regarded as a boundary condition for the problem.

2.2 A special case

This problem can be solved analytically for a specific case with particular functional forms.

Consider a log utility:

L ES|� ' *? S|

And a Cobb-Douglas production function:

s E&|� ' &k
|

The first order condition above then becomes:

�

&k
| � &|n�

' q

�
�

&k
|n� � &|n2

�
k&k3�

|n�

This is a second-order difference equation which is difficult to solve. We need to make it into

a fist-order difference equation by using a change in variable.

Define 5| ' savings rate at time t '
&|n�
&k
|

This turns out to be useful here, because the utility function here implies a constant saving

rate, regardless of the level of income.

The first order condition then can be written:

�

&k
|

�
�

�� 5|

�
'

q

&k
|n�

�
�

�� 5|n�

�
k&k3�

|n�

which may be simplified:
5|

�� 5|
' kq

�
�

�� 5|n�

�
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or

5|n� ' � n kq � kq

5|
This is a relation between tomorrow’s savings rate and today’s savings rate. It is not a

solution in itself, because it is a relation between optimal choices in different periods, not a

rule telling use the optimal choice as a function of the current state of the economy.

Graph this relationship as a convex curve on a set of axes marked5| and5|n�. Graph also a

45-degree line showing where5| ' 5|n�. There are two points where the lines intersect. If the

economy finds its way to one of these points, it will stay there. One such point is where the

saving rate is 1.0. This is implausible, since it says all output is saved and none is consumed.

The other point where the saving rate iskq, a fraction of income less than one. Verify that

5| ' kq satisfies the condition above.

Recall that the problem is constrained by the boundary condition, that saving is zero in the

terminal period. In the graph, this means we start at the point5A ' f and work our way

backward in time, to find out what the solution is for the current period. The graph suggests

we will converge to the point where5A ' kq� Provided that the terminal period when you die

is far enough in the future, this saving rate will be solution to the optimal saving problem for

the current period.

2.3 Solving recursively

We can perform this recursive operation explicitly. Start at the boundary point:5A ' f. Now

solve for saving in the previous period,5A3�using the first order condition above.

5A ' f ' � n kq � kq

5A3�

so

5A3� '
kq

� n kq
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Now plug this back into the first order condition for the previous period:

5A3� '
kq

� n kq
' � n kq � kq

5A32

which produces:

5A32 '
kq E� n kq�

� n kq E� n kq�

If we keep moving backwards:

*�4
A<"

5| ' *�4
A<"

A3|S
r'�

Ekq�r

�n
A3|S
r'�

Ekq�r
'

kq* E�� kq�

�* E�� kq�
' kq

Since this is the solution for the current period for when the terminal period is infinitely

far away, it would be a natural conjecture that this is also the solution to an infinite horizon

problem, in which there is no terminal period. We will investigate this conjecture below.
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3. A Deterministic Infinite Horizon Problem

3.1 Recursive Formulation

Lets consider again the infinite horizon problem:

4@ 
tS|c&|n��

"

|'f

"[
|'f

q|L dS|o (problem 1)

r�|� S| n &|n� ' s E&|�

In general, we can’t just find the solution to the infinite horizon problem by taking the limit of

the finite-horizon solution asA $4. This is because we cannot assume we can interchange

the limit and the max operators:

4@ *�4
A<"

A[
|'f

L ES|� 9' *�4
A<"

4@ 
A[

|'f

L ES|�

So we will take a different approach, taking advantage of the problem’s recursive nature,

called dynamic programming. Although we stated the problem as choosing an infinite se-

quences for consumption and saving, the problem that faces the household in period| ' f can

be viewed simply as a matter of choosing today’s consumption and tomorrows beginning of

period capital. The rest can wait until tomorrow.

Recall that the solution we found for the finite-horizon problem suggested that the desired

level of saving is a function of the current capital stock. That is, the rule specifies the choice

as a function of the current state of the economy:

&|n� ' } E&|�

Our goal in general will be to solve for such a function}, called a policy function.

Define a function�E&f�, called the value function. It is the maximized value of the objective

function, the discounted sum of all future utilities, given an initial level of capital in period| ' f
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for &f.

� E&f� ' 4@ 
tS|c&|n��

"

|'f

"[
|'f

q|L dS|o

Then �E&�� is the value of utility that can be obtained with a beginning level of capital in

period | ' � of &�, and q�E&�� would be this discounted back to period | ' f.

So rewrite problem 1 above as:

� E&f� '4@ 
Sfc&�

%
L ESf�n 4@ 

tS|c&|n��
"

|'�

"[
|'�

q|L dS|o

&

'4@ 
Sfc&�

dL ESf� n q� E&��o (problem 2)

r�|� Sf n &� ' s E&f�

If we knew what the true value function was, we could plug it into problem 2 above, and do

the optimization over it, and solve for the policy function for the original problem 1. But we

do not know the true value function.

For convenience, rewrite with constraint substituted into objective function:

� E&f� ' 4@ iL Es E&f�� &�� n q� E&��j

This is called Bellman’s equation. We can regard this as an equation where the argument is the

function�, a ’’functional equation’’. It involves two types of variables. First, state variables are

a complete description of the current position of the system. In this case the capital stock going

into the current period,&f is the state variable. Second, control variables are the variables that

must be chosen in the current period; here this is the amount of saving&�. If consumptionSf

had not been substituted out in the equation above, it too would be a control variable.

The first order condition for the equation above is:

L � ds E&f�� &�o ' q�� d&�o

This equates the marginal utility of consuming current output to the marginal utility of allocat-

ing it to capital and enjoying augmented consumption next period.
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3.2 Envelope theorem

We would like to get rid of the term �� in the necessary condition. Assume a solution for the

problem exists, and it is just a function of the state variable:

&� ' } E&f�

So

� E&f� ' 4@ iL Es E&f�� &�� n q� E&��j
becomes (where we can drop the max operator):

� E&f� ' L Es E&f�� } E&f�� n q� E} E&f��

Now totally differentiate (where everything is a function of &f):

�� E&f� ' L � Es E&f�� } E&f�� s
� E&f�� L � Es E&f�� } E&f�� }

� E&f� n q�� E} E&f�� }
� E&f�

�� E&f� ' L � Es E&f�� } E&f�� s
� E&f�� dL � Es E&f�� } E&f��� q�� E} E&f��o }

� E&f�

The FOC says the second term equals zero, so

�� E&f� ' L � Es E&f�� &�� s
� E&f�

Update one period

�� E&�� ' L � Es E&��� &2� s
� E&��

Or in a more compact form easier to remember, the envelope condition here is:

��|n� ' L �
|n�s

� E&|�

We can use this to get rid of term in first order condition. The FOC then becomes:

L � ds E&f�� &�o ' qL � Es E&��� &2� s
� E&��

This tells us that the marginal value of current capital, in terms of total discounted utility, is
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given by the marginal utility of using the capital in current production and allocating its return

to current consumption.

3.3 Apply to our special case:

Lets use again s E&|� ' &k
| , and � ES|� ' *? S|� This time, let’s solve by a Lagrangian instead

of substituting the constraint into the objective function.

The problem is stated:

� E&|� '4@ 
S|c&|n�

i*? ES|� n q� E&|n��j

r�|� S| n &|n� ' &k
|

Rewrite this in Bellman form:

� E&|� '4@ 
S|c&|n�

i*? ES|� n q� E&|n��jn b| E&
k
| � S| � &|n��

Differentiate to derive the first order conditions:

�

S|
� b| ' f

q�� E&|n��� b| ' f

or combining them:
�

S|
' q�� E&|n��

Let’s derive the envelope condition in this case. In general you can use a short cut, but let’s

do it the longer way here. Write the solution to all variables as functions of the state variable:

S| ' S E&|�, &|n� ' & E&|� � Then we may write the Bellman equation with all arguments as a

function of&|:

� E&|� ' *? ES E&|�� n q� E& E&|�� n b E&|� E&
k
| � S E&|�� & E&|��
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Now differentiate with respect to &|:

�� E&|� '
S�|
S|

n q�� E&|n�� &
�
|n� n b�| d&

k
| � S E&|� n &|n�o n b|

�
k&k3�

| � S�| � &�|n�
�

Eliminate the term that equals zero because of the constraint, and regroup:

�� E&|� ' S�|

�
�

S|
� b|

�
n &�|n� Eq�

� E&|n��� b|� n b|k&
k3�
|

The first two terms here are zero also, because of the first order conditions. Substitute for b|

and update one periodG

�� E&|n�� '
�

S|n�
k&k3�

|n�

This is the envelope condition here.

A simpler way to get the envelope condition would be just to take the derivative of the

original problem

� E&|� '4@ 
S|c&|n�

iL ES|� n q� E&|n��jn b| Es E&|�� S| � &|n��

with respect to &|. This gives you the same result, since all the other terms drop out in the end.

Shifted up one period, this also would give us:

��|n� ' b|n�s
� E&|n��

And when combined with the FOC: b| ' L �
|c we get the same envelope condition.

��|n� ' L �
|n�s

� E&|�

Now substitute the envelope condition into FOC:

�

S|
' kq

�

S|n�
&k3�
|n�

So the two necessary conditions for this problem are the equation above and the budget con-
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straint:

S| n &|n� ' &k
|

3.4 Solution by iterative substitution in our special case

In this special case we can solve explicitly for a solution. Rewrite the FOC and budget con-

straint:
&|n�
S|

' kq
&k
|n�

S|n�
&k
|

S|
� � '

&|n�
S|

Substitute the FOC into the constraint to get a consolidated condition:

&k
|

S|
' � n kq

&k
|n�

S|n�

Update one period the consolidated condition above and substitute it into itself:

&k
|

S|
' � n kq

�
� n kq

&k
|n2

S|n2

�

Do this recursively. Note that it is a geometric progression:

&k
|

S|
' � n kq n Ekq�2 n Ekq�� n ��� '

�

�� kq

So the policy function is:

S| ' E�� kq� &k
|

Note that this is the answer we guessed earlier, based on the finite horizon problem.

3.5 Other solution methods: Solution by conjecture:

In general, the functional forms will not allow us to get an analytical solution this way. There

are several other standard solution methods:

1) solution by conjecture

2) solution by iteration

3) others we will talk about later

13



Suppose we suspect because of the form of the utility function that the amount that the

household saves should be a constant fraction of their income, but we don’t know what this

fraction,w, is:

&|n� ' w&k
|

or equivalently

S| ' E�� w� &k
|

Divide the two equations above:

&|n�
S|

'
w

�� w

and substitute this into the FOC:
&|n�
S|

' kq
&k
|n�

S|n�

kq
&k
|n�

S|n�
'

w

�� w

Substitute the consumption function forS|n�:

kq
&k
|n�

E�� w� &k
|n�

'
w

�� w

so

kq ' w

We again reach the same solution as before:

S| ' E�� kq� &k
|

3.6 Solution by value-function iteration:

Another solution method is based on iteration of the value function. The value function actu-

ally will be different in each period, just as we earlier found the function} E&� was different

depending on how close we were to the terminal period. But it can be shown (but we do not

show this here) that as we iterate through time, the value function converges, just as} E&� con-
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verged in our earlier example as we iterated back further away from the terminal period. This

suggests that if we iterate on an initial guess for the value function, even a guess we know is

incorrect, the iterations eventually will converge to the true function.

Suppose we start with a guess for some period A n �:

�f E&An�� ' f

This is similar to assuming a terminal period in which I die. Our guess for the value function

implies that the discounted value of all future utility is zero, which implies that I consume all

wealth and save nothing in this period: SA ' &k
A , and &An� ' f�

So in previous period:

�� E&A � ' *? &k
A

We put a subscript on the value function, because this is changing over time, as it converges to

some function.

In the period before that, the problem is:

�2 E&A3�� ' 4@ i*? ESA3�� n q�� E&A �j

r�|� SA3� n &A ' &k
A3�

or

�2 E&A3�� ' 4@ i*? ESA3�� n q *? &k
Aj

r�|� SA3� n &A ' &k
A3�

Do the optimization:

u ' *? ESA3�� n q *? &k
A n b

�
&k
A3� � SA3� � &A

�
FOCs are:

b '
�

SA3�
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and

b ' kq
�

&A
or

�

SA3�
'

kq

&A
Substitute into budget constraint and get:

&A '
kq

� n kq
&k
A3�

and

SA3� '
�

� n kq
&k
A3�

Now plug these solutions into the value function �2:

�2 E&A3�� ' *?

�
�

� n kq
&k
A3�

�
n q *?

�
kq

� n kq
&k
A3�

�k

' kq *? Ekq�� E� n kq� *? E� n kq� n E� n kq� *? &k
A3�

Then write for previous period:

�� E&A32� ' 4@ i*? ESA32� n q�2 E&A3��j

r�|� SA32 n &A3� ' &k
A32

and so on...

It can be shown that this sequence of functions converges to:

� E&|� ' 4@ 

�
*? S| n q

�
E�� q�3�

�
*? E�� kq� n

kq

�� kq
*?kq

�
n

k

�� kq
*? &|n�

��

Once we know the true value function, we can solve for the policy function.

The FOC still holds that says:

L � ES|� ' q�� E&|n��
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Now we can say that:

�� E&|n�� '
k

�� kq

�

&|n�
So

�

S|
'

kq

�� kq

�

&|n�
or

S|
&|n�

'
�� kq

kq

Combine with the resource constraint:

S|
&|n�

'
&k
|

&|n�
� �

to get:

�� kq

kq
'

&k
|

&|n�
� �

and so:

&|n� ' kq&k
|

which is same solution as before.

Although this solution method is very cumbersome and computationally demanding, be-

cause it relies on explicit iteration of the value function, it has the advantage that it will always

work. It is common to set up a computer routine to perform the iteration for you.
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4. A stochastic Problem

4.1 Introducing uncertainty

One benefit of analyzing problems using dynamic programming, is that the method extends

very easily to a stochastic setting, in which there is uncertainty. We will introduce uncertainty

as affecting the production technology only, by including a random term in the production

function:

+| ' 5|s E&|� where 5| is i.i.d.

Here i5|j is a sequence of independently and identically distributed random variables. This

technology shock varies over time, but it’s deviations in different periods are uncorrelated.

These shocks may be interpreted as technological innovations, crop failures, etc.

We assume that households maximize the expected utility over time. Assume utility takes

the same additively separable form as in the deterministic case, but now future consumption is

uncertain.

The social planner problem now is:

4@ 
tS|c&|n��

"

|'f

.f

"[
|'f

q|L dS|o

r�|� S| n &|n� ' 5|s E&|�

Where the expectations operator.f indicates the expected value with respect to the probability

distribution of the random variables,S|c &|n�, 5| over all |, based on information available in

period| ' f.

Assume the timing of information and action is as follows: at the beginning of the period t

the current value of5| the exogenous shock is realized. So the value of technology and hence

total output is known when consumption takes place and when the end-of-period capital&|n�

is accumulated. The state variables are now&| and5|. The control variables areS| and&|n��

As before we can think about a social planner in the initial period choosing a whole se-
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quence of consumption -saving pairs iS|c &|n�j"|'f. But now in the stochastic case, this is not

a sequence of numbers but rather a sequence of contingency plans, one for each period. The

choice of consumption and saving in each period is contingent on the realization of the tech-

nology and capital stock in that period. This information is available during each period when

consumption and saving are executed for that period, but it is not available in the initial period

when the initial decision is being made for all future periods. A solution is a rule that shows

how the control variables are determined as a function of these state variables, both the capital

stock and the exogenous technology shock.

S| ' S E&|c 5|�

&|n� ' & E&|c 5|�

Note that all the variables involved here are random variables now, because they are functions

of the exogenous shock, which is a random variable.

The setup here is very similar to the deterministic case, except that the variables involved

are random, and the decision involves expectations over these. We again can write the problem

recursively in Bellman form:

� E&|c 5|� '4@ 
S|c&|n�

iL ES|� n q.|� E&|n�c 5|n��j

r�|� S| n &|n� ' 5|s E&|�

Note that the expectations operator may be thought of as integrating over the probability dis-

tribution of the shock:

� E&|c 5|� '4@ 
S|c&|n�

�
L ES|� n q

]
� E&|n�c 5|n��� E5|n�� _5|n�

�

where � E5|n�� is the distribution of the shock.
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Write this as a Lagrangian:

� E&|c 5|� '4@ 
S|c&|n�

iL ES|� n q.� E&|n�c 5|n��jn b| d5|s E&|�� S| � &|n�o

Take first order conditions:

S| G L � ES|�� b| ' f

&|n� G q.|�
�
&|n�

E&|n�c 5|n��� b| ' f

so

L � ES|� ' q.|�
�
&|n�

E&|n�c 5|n��

Envelope condition:

��&|
E&|c 5|� ' b|5|s

� E&|�

' L � ES|� 5|s
� E&|�

So the necessary condition becomes:

L � ES|� ' q.| dL
� ES|n�� 5|n�s

� E&|n��o

This has the same interpretation as always: you equate the marginal benefit of extra consump-

tion today to the marginal cost in terms of lost production and hence consumption tomorrow.

4.2 Our special case again

Again we can demonstrate a solution analytically for the special case of log utility and Cobb-

Douglas technology:

s E&|� ' 5|&
k
|

and � ES|� ' *? S|

The necessary condition then becomes:

�

S|
' q.|

�
�

S|n�
5|n�k&

k3�
|n�

�
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In the deterministic version we found a solution was a constant saving rate of kqc so that:

&|n� ' kq&k
|

and S| ' E�� kq� &k
|

Let’s conjecture a similar solution for the stochastic problem, of some constant saving rate,w,

where we take into consideration that income varies with the exogenous shock,5|:

&|n� ' w5|&
k
|

andS| ' E�� w� 5|&
k
|

Plug these into the necessary condition above, to see if it is satisfied.

�

E�� w� 5|&k
|

' kq.|

�
�

E�� w� 5|n�&k
|n�

5|n�&
k3�
|n�

�

' kq
�

E�� w� &|n�

' kq
�

E�� w� w5|&k
|

Which holds if we choose the constant saving rate to bew ' kq� (Note the expectations operator

was dropped because the variable&|n�is known in period|�)

4.3 Finding distributions

Because these solutions are for random variables, we would like to be able to characterize

their distributions. To do this we need to assume a convenient distribution for the underlying

stochastic shock. We assume that it follows a log normal distribution, with mean> and variance

j.

*? 5|��E>c j2�

Because5| is distributed log normal and the saving level,&|n�, is a function of it, saving must
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also be distributed log normal. We can characterize the distribution in terms of its mean and

variance, which will be functions of > and j. First let’s find the mean of the saving variable.

Take logs of the solution found above for saving:

&|n� ' kq5|&
k
|

*? &|n� ' *?kq n *? 5| n k *? &|

Now exploit the recursive nature of the problem:
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As we move in time, the initial value of saving disappears from the expression, and the other

expressions become a pair of geometric series. Take the limit as|$ f, then take the expected

value to find the mean of its distribution.
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This is the mean of distribution for saving. It is a function of the mean of the underlying shock.

Now let’s find the variance of the distribution of saving.
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2�
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multiplying this out and taking limit:

*�4
|<"

.
�
EE*? &|�� . E*? &|��

2�
' *�4

|<"

|3�[
�'f

k2E|3�3��. E*? 5� � >�2n
[
� �'�

2kE|3�3��kE|3�3��. E*? 5� � >� E*? 5� � >�

' *�4
|<"

|3�[
�'f

k2E|3�3��var E5��

'
j2

�� k2

The second set of terms in the first line above is zero, since the shocks were assumed to have a

zero covariance across periods. Again, the variance of the saving variable is a function of the

variance of the underlying technology shock.

The steps in the analysis above will be applied throughout the course to other situations.

Dynamic programming will be used to find the equilibrium policy functions, giving the control

variables as functions of current state variables. Then by assuming a convenient distribution

for the exogenous state variables, we can use the policy function to describe the distribution of

the control variables.
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