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In ‘The Equity Risk Premium: A Puzzle’, Mehra and Prescott (1985) developed an Arrow-
Debreu asset pricing model. They rejected it because it could not explain high enough equity risk
premia. They concluded that only non-Arrow-Debreu models would solve this ‘puzzle’. Here, 1
re-specify their model, capturing the effects of possible, though unlikely, market crashes. While
maintaining their model’s attractive features, this allows it to explain high equity risk premia and
low risk-free returns. It does so with reasonable degrees of time preference and risk aversion,
provided the crashes are plausibly severe and not too improbable.

1. Introduction

In ‘The Equity Risk Premium: A Puzzle’, Rajnish Mehra and Edward C.
Prescott (1985, p. 145) wrote:

‘Restrictions that a class of general equilibrium models place upon the
average returns of equity and Treasury bills are found to be strongly
violated by the U.S. data in the 1889-1978 period. This result is robust to
model specification and measurement problems. We conclude that, most
likely, an equilibrium model which is not an Arrow—-Debreu economy will
be the one that simultaneously rationalizes both historically observed
large average equity return (sic) and the small average risk-free return.’

I believe that their conclusion is too drastic and that their puzzle can be
solved. The solution involves noting that, while some specification changes do
not affect their results, other simple changes do. In particular, by specifying
Mehra and Prescott’s model to include a low-probability, depression-like third
state, I can explain both high equity risk premia and low risk-free returns
without abandoning the Arrow-Debreu paradigm.

*For many helpful discussions, I thank Charles Whiteman, Robert Forsythe and the members
of the Ph.D. seminar at the University of Iowa during the fall of 1986. I also thank Charles Plosser
and an anonymous referee for insightful comments on an earlier draft of this paper.
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The motivation for adding the third state is simple. Risk-averse equity
owners demand a high return to compensate for the extreme losses they may
incur during an unlikely, but severe, market crash. To the extent that equity
returns have been high with no crashes, equity owners have been compensated
for the crashes that happened not to occur. High risk premia should not be
puzzling in such a world.

2. The consumption asset pricing model

Mehra and Prescott model a frictionless pure exchange economy with a
single representative agent and a single perishable comsumption good pro-
duced by a single productive unit or ‘tree’. There are two assets, an equity
share in the tree and a risk-free asset. The tree yields a random dividend each
period and the equity share entitles its owner to that dividend in perpetuity.
The risk-free asset entitles its owner to one unit of the consumption good in
the next period only.

Trading in competitive markets, the agent maximizes

Eo| X (e, )

subject to the budget constraint:

c,=y,e,_1+pf(e,_1—e,) +f,_1“‘P,ff,, (2)

where ¢, is the agent’s consumption in period ¢, 8 is the agent’s subjective
time discount factor, U(-) is the agent’s utility function, E,(-) is the mathe-
matical expectation operator conditional on information in period zero, y, is
the tree’s dividend in period ¢, pf and p! are the prices of the equity and
risk-free asset in period ¢, and e, and f, are the agent’s equity and risk-free
asset holdings in period ¢.

The first-order conditions for this problem are

p,eU'((,‘,) = EnBU,(CHl)(yHl +pte+1)’

plfU’(ct) = EIBU/(CI+1)'

(3)

Market clearing implies

=y, e=1, f=0, forallz. (4)
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The agent displays constant relative risk aversion as given by the utility
function

ct-—1
U(c,a) = , 5
(ca) = —=— )
where a is the parameter of relative risk aversion. When a =1, the utility
function is logarithmic.
The production levels, y, and, thus, the consumption levels, c,, evolve
through time according to

Vo1 = X1V = Cii1s (6)

where x,,; € {A,...,A,} SR" is the gross growth rate, which follows an
ergodic Markov process, i.e.,

Prob(x,.; =X, | x,=X,) =¢,;. (7)

This process allows the apparent non-stationarity we observe in the per capita
consumption stream over the sample period. It also implies that consumption
is autocorrelated and realizations of the growth rate affect all later consump-
tion levels.

In this model, the expected utility in eq. (1) exists if, and only if, the matrix
A, whose elements are given by a,; = B¢, A ™%, is stable. This also establishes
that a Debreu competitive equilibrium exists.!

The period ¢ asset prices may be expressed as functions of the current state,
(¥ x,), by

pe(y” xt) = EI{B(yI:—al)[yt+1 +pe(yt+1’ xt+1)](yta)}’

Py x)=E{B(»:3)(»)},

where y, and y,,; have been substituted for c, and c,,;, and y,¢ and y %
have been substituted for U’(c,) and U'(c,,), respectively.

Note that y, and x, are sufficient for forecasting y,,; and x,, and that the
forecast depends only on the levels of y, and x,, not on the period. Therefore,

(8)

!'See Mehra and Prescott (1984, 1985). If the =0 consumption level is ¢ and its growth rate is
A, the discounted expected utility ¢ periods in the future is given by
Eo(U(e)) = (44" et =~ B) /(1 - a),
where 4, is the ith row of 4 and ¢ is a column vector of ones. Thus, the infinite sum in (1) will
converge only when 4 is stable.
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we can re-define the state as (c, i) when y,=c and x,=A,, and then re-write
(8) as

Pe(c’ i) =8 Z ‘#ij(Ajc)_a[pe(}‘jc’ J) + Ajc] c%
j=1

. : ©)
Pf(c’ i) =B Z ¢ij(>\jc) (ca) =B glqsijk;a,

j=1 J

by substituting ¢ and A ¢ for y, and y,,; when the growth rate is A ;, and then
summing over transition probabilities.

Since the equity’s price is homogeneous of degree one in ¢, it may be written
as

pe(c,i)=we, (10)
where w, is an undetermined coefficient. Substituting into (9) yields
w=8Y ¢, }"(w+1) for i=1,...,n. (11)
j=1

This may be re-written in matrix notation as
w=A(w+1), (12)

where w is the column vector of w,’s, ¢ is a column vector of ones and A4 is the
matrix defined above. The stability of 4 implies this system has a unique,
positive solution. Lucas (1978) showed that there is only one equilibrium
pricing equation in this context. Since we have found a solution for the asset
pricing function in eqgs. (10)—(12), we have found the unique asset pricing
function.

If the current state is (c,i) and the next state proves to be (Ac, j), the
equity’s return becomes

pe()\jc,j) +}\jc—~pe(c, i) _ )\j(wj-i-l)

€
v pe(e, i) v,

I

~1. (13)

Thus, when the current state is (c, i), the equity’s expected return is

Ri= ) b1 (14)
j=1
and the risk-free asset’s return is
Yopiei)  pMesi)

(15)
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The Markov chain’s stationary probabilities, # € R"*, exist and satisfy

7 =¢'w, where L m,=1 and ¢ = {¢;;}. Using these, the unconditional ex-
pected returns of the equity and the risk-free asset are

R°=

W E

mR¢ and Rf= ) =R (16)
i=1 i=1

I

The expected equity risk premium is R® — R'.

3. Mehra and Prescott’s two- and four-state specifications

For testing, Mehra and Prescott specified their model with either two or

four states. Using the method of moments, they estimated the parameters of
. the consumption process by matching its mean, variance and first-order

autocorrelation with the corresponding sample moments from United States
consumption data. Using these estimates and egs. (10)-(16), they calculated
each specification’s predicted risk premium for given risk preference parame-
ters (a’s) and time preference parameters (8°’s). Finally, they searched for a
values between zero and ten and B values between zero and one that gave
both a reasonable risk-free return and a reasonable risk premium when
compared to the United States economy.?

They found that the sample mean of the consumption level’s gross growth
rate was 1.018, its standard deviation was 0.036 and its first-order autocorrela-
tion was --0.14. The economy’s annual average risk-free return was 0.80
percent and the annual average equity return was 6.98 percent. The average
risk premium was 6.18 percent with a standard error of 1.76 percent.>

In a two-state specification for the consumption growth process, they found
that 0.35 percent was the largest risk premium corresponding to a risk-free
return between 0 and 4 percent. Varying the parameters between reasonable
limits raised the risk premium only to 0.39 percent [Mehra and Prescott (1985,
pp. 154-160)]. They tested an alternate two-state specification in which equity

*Mehra and Prescott’s data covered the period from 1889 to 1978. They used the
Kuznets-Kendrick—~USNIA measure on non-durables and services for real per capita consump-
tion; the annual average Standard and Poor’s Composite Stock Price Index, the annual dividends
on this index and the consumption price deflator on non-durables and services to find the equity’s
return; and the same consumption deflator and the yields on ninety-day Treasury Bills, from 1931
to 1978, Treasury Certificates from 1920 to 1930 and sixty- to ninety-day prime commercial paper
from 1889 to 1920 to find the risk-free asset’s return.

3Here, Mehra and Prescott assume that U.S. Treasury bills are risk-free or, more correctly, that
U.S. Treasury bill returns are a reasonable proxy for risk-free returns. I will make the same
assumption. The evidence to date suggests this is reasonable. [The government did not default on
its obligations during the sample period, which included the Great Depression. Further, Fama
(1975, 1976) shows that inflation rate innovations have caused very little uncertainty in real
feturns.] If we allow the possibility of government default, the true risk premium will be greater
than 6.18%, but the papers main results still hold. As the examples in section 4 will show, Mehra
and Prescott’s model can explain high risk premia when appropriately specified.
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owners, who bear all the risk, receive only one tenth of the dividend on
average. This increased the risk premium only 0.1 percent.* A four-state
specification yielded risk premia ranging from 0.35 to 0.39 percent [Mehra and
Prescott (1985, pp. 154-160)].

Thus, for acceptable risk-free returns and risk aversion parameters, these
specifications predict risk premia that are much smaller than the risk premium
actually observed. This is the puzzle posed by Mehra and Prescott.

4. The three-state specification

The Mehra—Prescott specifications always assume that consumption growth
rates are symmetric about their mean and they fall above their mean as often
as they fall below. Thus, in their two-state specification, times are always
either good or poor, with the equity returns slightly higher or lower than
average. In their four-state specification, times are good, poor or average, with
average times twice as likely as either good or poor.

While equity returns vary little from the norm in good and poor times, we
also observe rare bad times or crashes, when consumption falls drastically and
equity returns are far below average. Incorporating a low-probability, depres-
sion-like third state in Mehra and Prescott’s model not only captures the
effects of these crashes, it also solves their puzzle.’

To specify a three-state version, assume x, € {A,, A,, A, }, where

A=14+p+9,
A,=14+p-38,
>\3=¢/(1+I~L),

and ¢ is a fraction or a combination of the other parameters such that
Ay <A, <AL

*Here, Mehra and Prescott used a security whose dividend in period ¢+ 1 is the tree’s actual
dividend minus a fraction of its expected dividend. This fraction is assumed to be committed as of
time ¢ If 6 is the fraction of the tree’s expected dividend which is committed, the price of the
security becomes

p(c,i)=8 Z q>ij()\jc)_“[p°()\jc,j) +c}\j—0 Z ¢,-kc)\k] c®.
j=1 k=1
This can be written in the form p°(c¢, i) = w;c, where

n n

w=B3 ¢ij>‘i_a[)‘j“? +X,-60) ¢ik>\k}'
j=1 k=1

In particular, Mehra and Prescott set #=0.9 so that 90 percent of the expected dividend is

committed, leaving all of the risk to the borne by the security owners who receive only 10 percent

of the dividend on average. See Mehra and Prescott (1985, pp. 157-158).

STwo state specifications in which one state represents ‘normal’ growth and the other, low
probability, state represents the crash were rejected because they allow no variance in ‘normal’
growth.

e g e
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Let the transition probability matrix be

¢ l-¢—79 19
¢=|1-¢—n o 7 |- (17)
1/2 1/2 0

Interpret states 1 and 2 as-the ‘normal’ states and state 3 as a one-time
crash. A crash will only follow states 1 or 2, and then only with the low
probability of 5. It never occurs twice in a row.® For simplicity, states 1 and 2
follow a crash with equal probability. With A, low, consumption falls drasti-
cally when a crash occurs. After a crash, the consumption growth rate returns
to normal, though a crash will effect all future consumption levels.’

The corresponding stable probabilities are

1/(2(1+7))
7=11/(2(1+9)) |. (18)
7/(1+n)

The consumption growth rate’s expected value is then

(L+7¢)(1+p)
E(x,) = D - (9)

its second moment about zero is

(1+ 79 )(1 + p.)2 + 82
(1+m) |

B(x?) =

(20)

SSetting ¢,; = 0 implies that, while consumption can return to its pre-crash level only after an
extended period, its growth rate returns immediately to normal. This is certainly more plausible
than consumption returning immediately to its pre-crash level, but may still be unrealistic. Setting
¢33 > 0 would allow extended periods of exceptionally low growth. This would make the equity
tiskier and, thus, allow lower (more reasonable) risk aversion parameters and lower crash
Probabilities to explain the observed risk premium.

"This is easily seen by picking a reference year and calling it year zero. Consumption in period
T>0is given by

T
cr=cy II x,.
=1

Thus, all past growth rates, including any past crashes, affect c;. Further, one can determine how
Mmany ‘average’ growth years are required for consumption levels to recover from the crash. Set
X1 =Xy, cp=c¢y and x, = M, for 1> 1 (where M, is the mean gross growth rate). Then solve the
above equation for T ~ 1 to get the number of ‘average’ growth years for a complete recovery. For

€xamples 1, 2 and 3, consumption recovers 38, 16 and 255 average growth years after a crash
respectively.
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and its moment with itself once lagged (again about zero) is

E(xx, )= 62(2¢—1+n)+(1(r;1;) (1—n+2n¢). 1)

Estimating the three-state process

To estimate risk premia, estimators of the parameters u, & and ¢ must be
derived for given crash probabilities (7’s). First, the specification chosen for
the parameter y must be substituted into eqs. (19)—(21). If the resulting
equations can be inverted to give real solutions for the parameters, the desired
estimators can be derived using the method of moments.3 Then, for any
particular risk aversion and time preference parameters, the risk premium may
be found from egs. (11)—(16). Some examples follow. Each was chosen so that
€gs. (19)-(21) can be inverted easily.

For each of these examples, I calculated risk premia and risk-free returns
corresponding to various parameters. Using a grid search, I found that
maximum risk premium subject to the constraints that n € [0.0001, 0.2},
a&(0,10], B (0,1), the risk-free return is between 0 and 3 percent,
and the matrix 4 is stable. I also found the parameter configurations that
met these constraints while giving risk premia between 5 and 7 percent. My
results are summarized in the tables with each example.

Example 1: Y=k, 0<k<1 -8/1+p

In this example, A, = k(1 + p) <A, <A (given & > 0) and, therefore, is a
crash state. Substituting ¢ = k into (19)-(21) vields the following estimators:

A= +n)M,/(1+kn)-1, (22)
8= [ +m)M, — (1 + k) (1 + )] (23)

=l0emrs—(-ns2n)0 47+ -8 282, (0

provided that (23) has real solutions. In these equations, M, and M, are the
sample mean and second moment (about 0) of the consumption growth rate;

M, is the sample moment of consumption with itself once lagged (again about
0).

8Estimators in terms of the mean, variance and first-order autocorrelation may also be found,
but the algebra using the moments about Zero is more convenient,

e e e e
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Table 1

Example 1: A;=(1+p)/282 (Output falls to one-half of its normal expected value during a
crash.)

Maximum risk premia for valid crash probabilities

Maximum Corresponding Corresponding Corresponding
Crash risk risk aversion time preference risk-free
probability premium parameter parameter return
(m (annual %) - (@) 8 (annual %)
0.0001 7125 10.00 0.997 2.98
0.0002 11.98 10.00 0.920 2.75
0.0003 15.45 9.85 0.890 1.49
0.0004 20.96 10.00 0.800 2.02
0.0005 25.23 10.00 0.750 1.88
0.0006 29.53 10.00 0.700 2.61
0.0007 30.29 9.85 0.700 0.67
0.0008 T 35.61 9.95 0.650 0.14
0.0009 40.69 10.00 0.600 1.53
0.0010 40.70 9.85 0.600 1.40
0.0020 70.56 9.95 0.400 0.48
0.0030 91.33 9.95 0.300 2.23
0.0040 104.34 9.90 0.250 241

“Here A, is tke gross growth rate in output during a crash year and (1 + ) is the average gross
growth rate during ‘normal’ years.

For k= 0.5, output falls about as much in one crash year as it did in the
first three years of the Great Depression.” Table 1 gives the maximum risk
premia ard the corresponding a’s, B’s and risk-free returns for all valid 7’s in
the grid search when k = 0.5 [ie., all ’s for which (23) has real solutions]. For
each 1, table 2 shows the « and B ranges that gave risk premia between 5 and
7 percent and risk-free returns between 0 and 3 percent. Notice a risk aversion
parameter as low as 4.7 can lead to both a reasonable risk premium and a
reasonable risk-free return. Some particularly interesting parameter sets are
given the table 3. They are some of the « and B combinations that give
risk-free returns and risk premia that are very near those found in the
cconomy. Notice that, as expected, the risk aversion parameter needed to
explain the risk premium decreases as the probability of a crash increases.

®To put these disasters in perspective, consider how they would compare to the worst disaster in
the sample period, the Great Depression. If, in one year, production were to fall as much as it did
during the entire Great Depression, the resulting disaster would be sitilar to example 1. [Real per
capita industrial production fell to 52% of its original value between 1929 and 1932. It surpassed
its 1929 value in 1940, The gross growth rate during the Tecovery period (1932-40) averaged 1.1.]
Similarly, if, in one year, consumption were to fall as much as it did during the entire great
depression, the resulting disaster would be similar to example 2. [Real per capita personal
consumption expenditures fell to 78% of its original level between 1929 and 1933. It surpassed its
1929 value in 1939 with an average gross growth rate of 1.04 over the recovery period (1933-39),)
See the United States Department of Commerce (1973).
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Table 2

Example 1: A;=(1+p)/2.* (Output falls to one-half of its normal expected value during a

crash.)

Risk aversion and time preference parameter ranges that yield risk premia between 5 and 7
percent with risk-free returns under 3 percent for valid crash probabilities

Crash Risk aversion Time preference
probability parameter parameter
(m (a) range (B) range

0.0001 — —
0.0002 8.85-9.00 0.991-0.999
0.0003 8.20-8.50 0.989-0.999
0.0004 7.70-8.10 0.989-0.999
0.0005 7.30-7.80 0.980-0.999
0.0006 7.00-7.60 0.980-0.999
0.0007 6.80-7.35 0.980~-0.999
0.0008 6.65-7.20 0.980--0.999
0.0009 6.50-7.05 0.970-0.999
0.0010 6.35-6.85 0.970-0.999
0.0020 5.50-6.00 0.970-0.999
0.0030 5.00-5.45 0.960-0.999
0.0040 4.70-5.15 0.960-0.980

*Here A, is the gross growth rate in output during a crash year and (1 + p) is the average gross

growth rate during ‘normal’ years.

Table 3

Example 1: A3 =(1+p)/2.* (Output falls to one-half of its normal expected value during a

crash.)

Parameter configurations that give risk-free returns and risk premia
very near the economy’s sample values

Risk Time Corresponding Corresponding

Crash aversion preference risk-free risk

probability parameter parameter return premium

(n (o) 8 (annual %) (annual %)
0.0008 7.05 0.997 0.77 6.36
0.0008 7.00 0.999 0.83 6.18
0.0009 6.90 0.994 0.87 6.38
0.0009 6.90 0.995 0.77 6.38
0.0009 6.85 0.997 0.83 6.19
0.0009 6.85 0.998 0.73 6.19
0.0010 6.75 0.993 0.88 6.34
0.0010 6.75 0.994 0.78 6.33
0.0010 6.70 0.996 0.84 6.15
0.0010 6.70 10.997 0.74 6.14
0.0010 6.65 0.999 0.79 5.96
0.0020 5.75 0.989 0.83 5.92
0.0020 5.75 0.990 0.73 5.92
0.0030 5.30 0.980 0.89 6.15

*Here A, is the gross growth rate in output during a crash year and (1 + p) is the average gross

growth rate during ‘normal’ years.

AR

[T

B I

o e |

4 e p—




T.A. Rietz, The equity risk premium

Table 4

Example 2:  A; =0.75.% (Output falls to three-fourths of its previous value during a crash.)

Maximum risk premia for valid crash probabilities

Maximum Corresponding Corresponding Corresponding
Crash risk . risk aversion time preference risk-free
‘ ’ probability premium parameter parameter return
(n) (annual %) (a) ® (annual %)

0.0001 0.23 1.75 0.999 2.99

L 0.0002 0.23 1.75 0.999 2.99

i 0.0003 0.23 175 0.999 2.99
0.0004 023 1.75 0.999 2.99

i 0.0005 0.23 1.75 0.999 298
0.0006 0.23 1.75 0.999 2.98
0.0007 0.23 1.75 0.999 298
0.0008 0.23 1.75 0.999 2.98

b 0.0009 0.23 175 0.999 2.98

3 0.0010 0.23 1.75 0.999 298

{ 0.0020 0.24 1.75 0.999 2.97
0.0030 0.25 1.75 0.999 297
0.0040 025 1.75 0.999 2.96

A 0.0050 0.26 1.75 0.999 2.95

X 0.0060 0.26 1.75 0.999 294
0.0070 0.27 1.75 0.999 2.94
0.0080 6.37 10.00 0.992 2.97

; 0.0090 6.89 10.00 0.989 214
0.0100 7.45 10.00 0.980 1.96
0.0110 8.08 10.00 0.960 2.97
0.0120 8.65 10.00 0.950 2.98
0.0130 9.14 10.00 0.950 1.95
0.0140 9.66 10.00 0.940 2.08

Table 5

*Here A; is the gross growth rate in output during a crash year.

Example 2:  A; =0.75.2 (Output falls to three-fourths of its previous value during a crash.)

Risk aversion and time preference parameter ranges that yield risk premia between 5 and 7
percent with risk-free returns under 3 percent for valid crash probabilities

Crash Risk -aversion Time preference

probability parameter parameter

() () range (B) range

| 0.0008 9.75-10.0 0.992-0.999
B 0.0009 9.40-10.0 0.989-0.999
0.0010 9.10-9.80 0.980-0.999

; 0.0110 8.80-9.60 0.980-0.999
0.0120 8.55-9.40 0.980-0.999

0.0130 8.30-9.20 0.980-0.999

0.0140 8.15-9.05 0.980-0.999

*Here A; is the gross growth rate in output during a crash year.
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Table 6
Example 2: A; =0.75.2 (Output falls to three-fourths of its previous value during a crash.)
Parameter configurations that give risk-free returns and risk premia
very near the economy’s sample values
Risk Time Corresponding Corresponding
Crash aversion preference risk-free risk
probability parameter parameter return premium
(m (a) (8) (annual %) (annual %)
0.010 9.80 - 0.999 0.74 6.95
0.011 9.50 0.999 0.82 6.80
0.012 9.25 0.999 0.84 6.69
0.013 9.15 0.995 0.84 6.86
0.013 9.10 0.997 0.81 6.74
0.013 9.05 0.999 0.78 6.63
0.014 9.00 0.994 0.82 6.83
0.014 8.95 0.996 0.80 6.72
0.014 8.90 0.998 0.77 6.60
0.014 8.85 0.999 0.84 6.49

®Here A; is the gross growth rate in output during a crash year.

Example 2: y=k/(1+p), O<k<l—p—§

Here A;=k<X,<A; (given 8> 0). Substituting ¢ =k/(1+p) into
(19)-(21) yields the following estimators:

A=1+n)M —nk-1, (25)
S=[+mm— 1+ p) ~ i, (26)

$=[1+mM— A -n)[a+p)+ 82] — 2mk (1 + ﬁ)]/zéz, (27)

provided that (26) has real solutions.

For k = 0.75, consumption falls in one crash year about as much as it did in
the first four years of the Great Depression. Table 4 gives the maximum risk
premia and the corresponding «’s, 8’s and risk-free returns for all valid 7’s
when k& = 0.75. For each 7, table 5 shows the « and B ranges that give risk
premia between 5 and 7 percent and risk-free returns between 0 and 3 percent.
Table 6 gives some parameter sets that correspond to risk-free returns and risk
premia that are very near those found in the economy. Again the risk aversion
parameter needed to explain the risk premium decreases as the probability of a
crash increases.
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Table 7

Example 3: A3 =p.? (All output is lost except its normal net growth during a crash year.)

Maximum risk premia for valid crash probabilities

Maximum

Corresponding Corresponding Corresponding
Crash risk risk aversion time preference risk-free
Probability premium | parameter parameter return
(m) (annual %) (o) 8) (annual %)
0.0001 186.83 2.45 0.35 1.42
0.0002 294.22 2.40 0.25 1.09
0.0003 293.19 2.30 0.25 1.69
0.0004 382.95 230 0.20 2.65
0.0005 794.45 2.45 0.10 2.96
0.0006 1443.85 2.60 0.05 1.71
0.0007 291.98 2.10 0.25 1.67
0.0008 790.84 2.35 0.10 0.22
0.0009 525.46 2.20 0.15 2.59
0.0010 789.10 2.30 0.10 0.40

*Here A; is the gross
net growth rate.

Example 3: A,

Table 8

growth rate in output during a crash year and p is the expected normal

= p.® (All output is lost except its normal net growth during a crash year,)

Risk aversion and time preference parameter ranges that yield risk premia between 5 and 7
percent with risk-free returns under 3 percent for valid crash probabilities

Crash Risk aversion Time preference
probability parameter parameter
(m) (@) range (B) range
0.0003 1.30-1.35 0.940--0.960
0.0004 1.20-1.25 0.940-0.960
0.0005 1.15-1.20 0.940-0.960
0.0006 1.15 0.940-0.960
0.0007 1.10-1.15 0.930-0.960
0.0008 1.05-1.10 0.940-0.960
0.0009 1.05 0.940-0.960
0.0010 1.00-1.05 0.940-0.960

“Here A; is the
tet growth rate,

gross growth rate in output during a crash year and p is the expected normal




130

Example 3: y=p/(1+p)

=M —1/(1+n),

A

n A2]1/2
§=[1+m)M,—-(1 +a)> -2,

T.A. Rietz, The equity risk premium

Here Ay =p <A, <A,. The estimators are given by

é= [(1 +n)M, - (1+4) —q(@2-1)+ (1 —n)éz]/2<§2,

provided that (29) has a positive solution.

Table 9

(28)
(29)
(30)

Example 3:  A; = p.2 (All output is lost except its normal net growth during a crash year.)

l Parameter configurations that give risk-free returns and risk premia
4 very near the economy’s sample values
i . Risk Time Corresponding Corresponding
SR Crash aversion preference risk-free risk
. probability parameter parameter return premium
(m (a) (8 (annual %) (annual %)
0.0001 1.590 0.960 0.86 6.17
0.0001 1.595 0.960 0.75 6.29
0.0001 1.585 0.962 0.75 6.04
0.0002 1.430 0.956 0.82 6.37
0.0002 1.420 0.958 0.83 6.12
0.0002 1.425 0.958 0.72 6.24
0.0002 1.415 0.960 0.73 6.00
0.0003 1.325 0.956 0.83 6.18
: ; 0.0003 1.330 0.956 0.72 6.30
e 0.0003 1.320 0.958 0.73 6.06
i 0.0004 1.260 0.954 0.85 6.28
‘ 0.0004 1.250 0.956 0.86 6.03
0.0004 1.255 0.956 0.75 6.15
: : 0.0005 1.205 0.954 0.82 6.22
Lo 0.0005 1.195 0.956 0.82 5.98
. 0.0005 1.200 0.956 071 6.09
[ 0.0006 1.160 0.954 0.80 6.17
i 0.0007 1.130 0.952 0.82 6.32
0.0007 1.120 0.954 0.83 6.07
‘ 0.0007 1.125 0.954 0.72 6.19
. 0.0008 1.095 0.952 0.86 6.22
Lo 0.0008 1.100 0.952 0.75 6.34
) 0.0008 1.090 0.954 0.76 6.09
0.0009 1.065 0.952 0.89 6.15
, 0.0009 1.070 0.952 0.77 6.27
o 0.0009 1.060 0.954 0.78 6.02
0.0010 1.050 0.950 0.86 6.38
0.0010 1.040 0.952 0.87 6.12
0.0010 1.045 0.952 0.76 6.24
0.0010 1.035 0.954 0.77 6.00

“Here A, is the gross growth rate in out
net growth rate.

put during a crash year and p is the expected normal
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This is an unprecedented, but conceivable crash. Because this crash is so
extreme, its probability must be very low to be conmsistent with the consump-
tion series’ observed moments (n’s greater than 0.001 are inconsistent). For
each 7, table 7 shows the maximum risk premium and the corresponding «, g8
and risk-free return. Table 8 shows the « and B ranges that give risk premia
between 5 and 7 percent and risk-free returns between 0 and 3 percent. Table
9 gives some parameter sets that correspond to risk-free returns and risk
premia that are very near those found in the economy. Again the risk aversion
parameter needed to explain the risk premium decreases as the probability of a
crash increases. Note risk aversion parameters as low as 1 can explain both the
high risk premium and low risk-free returns.

4. Conclusions

In an attempt to explain the equity risk premium, Mehra and Prescott
(1985) developed a frictionless, pure exchange Arrow—Debreu economy. They
also rejected it on the grounds that it seemed inconsistent with the data.
Further, they concluded that we will need to abandon Arrow-Debreu type
asset pricing models to explain both high equity risk premia and low risk-free
returns.

In this paper, I specified their model to capture the effects of possible,
though unlikely, crashes. This specification does not alter the attractive fea-
tures of their model. The economy is still a finite state version of Lucas’ (1978)
model and still has a Debreu competitive equilibrium with non-stationary
consumption levels. There are no frictions and no closed markets. But, with
the addition of a crash state, the model explains both high equity risk premia
and low risk-free returns; it solves the Mehra—Prescott puzzle. Further, it does
so with reasonable degrees of time preference and risk aversion provided the
crash is plausibly severe and not too improbable.
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