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Consider the following n-state Markov process for the random variable, xt:

xt =


x1
x2
...
xn

(1)

The one-period transition probability matrix, with the entry in the ith row
and jth column denoting the conditional probability of going from state i to
state j, is:

Π =


π 1−π

n−1
1−π
n−1 · · · 1−π

n−1
1−π
n−1 π · · · · · · 1−π

n−1
1−π
n−1 · · · . . . ... 1−π

n−1
1−π
n−1 · · · · · · π 1−π

n−1
1−π
n−1 · · · · · · · · · π

 (2)

There will be n eigenvalues associated with the stochastic matrix but since
the columns (and rows) sum to one, we know that one of the eigenvalues will
be equal to 1. (The proof is easy: Π ·1 = 1). The unconditional probabilities,
p0=(p1,p2, ..., pn) are given by the solution to ΠTp = p. Since a matrix and
its transpose have the same eigenvalues, we see that the eigenvector associated
with the eigenvalue of unity is the vector of unconditional probabilities.
The remaining n−1 eigenvalues are not distinct. Let λ denote this eigenvalue

and since the sum of the eigenvalues equal the trace of a matrix we have:

(n− 1)λ = nπ − 1
Or:

λ =
nπ − 1
n− 1 (3)

Let the vector of realizations for xt be symmetric around zero so that p · x =
0. That is, the unconditional mean of xt,E (xt) = 0. I next show that the
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eigenvalue λ is the first-order autocorrelation of xt. That is λ = Corr (xt, xt+1).
Without proof, I first state that the vector x is an eigenvector associated with
λ. (It can be shown that x can be expressed as a linear combination of the
n − 1 eigenvectors associated with the non-distinct eigenvalue λ.) Hence we
have

Π · x =λx
The left-hand side is simply the vector of conditional expectations of xt+1.

Write this as: 
E1 (xt+1)
E2 (xt+1)

...
En (xt+1)

 = λ


x1,t
x2,t
...
xn,t

 (4)

Define the diagonal matrix D as:

D =


x1,t 0 · · · 0
0 x2,t · · · 0

0 · · · . . . 0
0 · · · · · · xn,t


Then multiplying both sides of eq. (4) by D produces

E1 (x1,txt+1)
E2 (x2,txt+1)

...
En (xn,txt+1)

 = λ


x21,t
x22,t
...
x2n,t

 (5)

Mulitplying both sides by p0 and using the fact that E (xt) = 0, we have

Cov (xt, xt+1) = λV ar (xt)

Which establishes that λ = Corr (xt, xt+1).
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